TR . T DR R —

: : b

e .
- |
Inn |
" = o = E = ¥ e = - = e
: i e % i i " s o - : -
s % ; |
.'\.

i - e s - ‘xl
o A e bt P g : : : i ;
3 . F, T
Sl o S o, - e s E i ' = P -
- -
i : i s : - - 1 = Sk = ; : i "
#
I - |
: e 5 - . : - : . : i 3 4
= = = = - E: =]
: > : e i -: - - e -
e] ; £ ol : 5 : R : S e "1 3
. - . x E 1 ' 8
5l
g
=2 L 2.3
2 "
; ‘
X

B R TR e TN

i
I
|
,
"

% e
T
e | ¥
o
=g
o o .
]
-
F-ﬁi
5
PR % R
b j
¥
g i
Ry -
£
! "
i
o
& o -
o
:
o
2
*: %
“
=
o
5
4
=

P ¢

. and BASIC

nguage Reference

.
A
% = |
i = -
i
3 5 I
X L
A i :
" £
3
"
.- -\. :
F i
.
et
3 =
I-. = -
% . ;
= s e " o e -
;
i "
= -
£
- i
=
2 - 5
R 1
=t
-:
i 2 :
1
-
L 22
:-

] - '
CUSTOM MANUFACTURED IN THE USA BY RADIO smcxgn DIVISION OF TANDY CORPORATION

TRS-80
Model 111

Operation
and BASIC
Language
Reference
MVManual

Radie Sfhaek”

g A DIVISION OF TANDY CORPORATION
FORT WORTH, TEXAS 76102

TRS-80 Model III Operation and BASIC
Language Reference Manual: ©1980 Tandy
Corporation, Fort Worth, Texas 76102 U.S.A.
All Rights Reserved.

Reproduction or use, without express written
permission from Tandy Corporation. of any
portion of this manual is prohibited. While
reasonable efforts have been taken in the
preparation of this manual to assure its accuracy.
Tandy Corporation assumes no liability resulting
from any errors or omissions in this manual. or
from the use of the information obtained herein.

Model III System Software: ©1980 Tandy
Corporation and Microsoft. All Rights
Reserved.

The system software in the Model I
microcomputer is retained in a read-only memory
(ROM) format. All portions of this system
software, whether in the ROM format or other
source code form format, and the ROM circuitry,
are copyrighted and are the proprietary and trade
secret information of Tandy Corporation and
Microsoft. Use. reproduction or publication of any
portion of this material without the prior written
authorization by Tandy Corporation is strictly
prohibited.

10 9 8 7 6 56 4 3 2

To Our Customers. . .

The TRS-80® Model III Computer is a very powerful tool for business, home and
recreation. Twenty years ago, this capability would have cost hundreds of times as
much as your Model III cost, and would have taken up an entire room.

In spite of its power and internal complexity, the Model I1l can be quite simple to
operate. In fact, you can determine just how * ‘technical’” a machine you want it to
be.

At the simplest level of operation, you can use Radio Shack prepared cassette
programs. All you will need to know is how to load and run a cassette program, and
how to operate the cassette recorder. If this is where you want to start, read
Chapters 1 through 6 of the Operation Section. Y ou may also want to read about
CLOAD and SYSTEM in Chapter 2 of the Language Section.

If you want to write your own programs and you are a beginner, read Chapters 1
through 6 of the Operation Section, then start reading the book, Getting Started
with TRS-80 BASIC . That, plus several other Radio Shack books, can guide you to
becoming a programmer in BASIC and Z-80 language (‘‘machine code’’).

If you already know BASIC, and especially if you have experience on a TRS-80
Model I, read the entire Operation Section of this manual, as well as the Appendix
which compares the Model I and Model III. The Model 1II has many unique
features and some very important differences. A few minutes spent before you
press could save you hours later.

About This Manual

This manual contains operating instructions (Section 1) and a description of Model
I BASIC (Section 2 and Appendix). It is arranged for easy reference, whether you
are seeking simple or technical information. Page numbering starts over at the
beginning of each chapter, and chapter numbering starts over at the beginning of
each section. There is acomprehensive Index at the end of this book.

If you are a beginner, don’t worry about the technical parts in the Operation
Section. The beginning of each chapter is for you. (When you get to the POKE
statements, you can skip ahead to the next chapter. ..) You don’t need to read past
Chapter 6. Then, when you learn simple BASIC programming, you can return and
try out all the ‘‘goodies’” packed into your Model II1.

TRS-80 MODEL Iil_

Contents

Operation Section

A Brief Description of the Computer 1/1-3
Installation o i i 2/1-3
Operationccoiiiiiiii i 3/1-9

Power-On [] RESET Switch [] Power-Off [] Start-Up Dialog
(] Modes of Operation [] Sample Session

Using the Keyboard................oovvinininnnnnn... 4/1-3
Capitals and Lowercase [] Special Keys [] Control Codes
Using the Video Display............covovvveneennnnnnnn. 5/1-5

Character Size [J Cursor [] Scroll Protection [] Text []
Graphics [] Space Compression [] Special Characters

Using the Cassette Interface..................c.c.ou.... 6/1-6
Cassette Transfer Speed [] Loading Errors [] Saving a BASIC
Program on Tape [Loading a BASIC Program from Tape []
How to Search for a Program [] Loading a SYSTEM Tape []
Searching for a Program

UsingaLinePrintercoovvvvverininnnnnn.. 7/1-6
Line Printer vs Video Display Output [] Printer Control
Features [] Print Screen Function

Using the RS-232-C Interface..............ovvvvnvnn.... 8/1-8
What is an Interface? [] Using the Model Il as a Terminal []
Programming the RS-232-C

Routing Input/Outputcooovviiii i, 9/1-3
To Route from One Device to Another [J Routing Multiple
Devices

Real-Time Clock.cciiiiiniii e, 10/1-3
To Set the Clock [] To Read the Clock [] To Display the Clock

Input/Output Initialization............................. 11/1-1

Technical Information 12/1-26

To Protect High RAM] ROM Subroutines [] Memory Map
L] Summary of Important ROM Addresses [Summary of
Important RAM Addresses

Troubleshooting and Maintenance 13/1-3
Symptom/Cure Table [] AC Power Sources [] Maintenance
Specifications............ooiii it 14/1-3

Power Supply [J Microprocessor [J RS-232-C Interface
(] Parallel (Printer) Interface [] Cassette Interface

BASIC Language Section

BASIC Concepts........coviiiiiiiriiiiinnrnnnnnnenns 1/1-30
CoMMAaNASccvvvneriennnnnrrnaiisetananrraanas 2/1-7
Input-Output Statementscooiontn 3/1-13
Program Statementscoooiiniann 4/1-15
Stringsciiiiiiiiii e e eeeaaeeeaeneaes 5/1-9
Arrayscoviiiiiiiiiiii it it e 6/1-6
Arithmetic Functions...............cociiiiiiiiiiiinn 7/1-5
Special Features..............coeiviiviniiii i, 8/1-10
Editingcoiiiiiiniiiiiiiiiiii it 9/1-7
Appendices

Model lll Summaryoovviiiiiiiiinrinnanennnns A/1-18

Special Characters and Abbreviations [_[]Commands [] State-
ments [] Functions [Reserved Words [] Program Limits []
Memory Use [J Accuracy []

Error CoOOeS . ..o v v ieeereeerunenonsssnarnannnnrnnnnns B/1-3

TRS-80 Model Il Character Codes C/1-9
Keyboard/Display Characters [] Graphics [] Special Charac-
ters [_1Video Display Worksheet []

internal Codes for BASIC Keywords D/1-2
Derived Functionscviiiiiiiiiiinrneninnnenns E/N-2
Base CONVersioNsccvvevrereersennansnansnssnns F/1-4
Model | to Model Il Program Conversion Hints.......... G/1-2
GloSSarYt iiiiieiiii i i e H/1-3
RS-232-C Technical Information.....................000 i11-4
Index

For Warranty and Customer Information, see the back cover and
inside back cover.

o

s
MCRARTMIVIT

TRS-80

OPERATION

1/ A Brief Description

The Radio Shack TRS-80® Model I1I is a ROM-based computer system consisting of:

@ A 12-inch screen to display results and other information

A 65-key console keyboard for inputting programs and data to the Computer

A 7-80 Microprocessor, the *‘brains’’ of the system

A Real-Time Clock

Read Only Memory (ROM) containing the Model III BASIC Language (fully

compatible with most Model I BASIC programs)

@ Random Access Memory (RAM) for storage of programs and data while the
Computer is on (amount is expandable from "16K" to "48K", optional extra)

® A Cassette Interface for long-term storage of programs and data (requires a
separate cassette recorder, optional/extra)

® A Printer Interface for hard-copy output of programs and data (requires a
separate line printer, optional/extra)

@ Expansion area for upgrading to a disk-based system (optional/extra)

@ Expansion area for an RS-232-C serial communications interface (optional/extra)

All these components are contained in a single molded case, and all are powered via
one power cord.

Video Display Screen

Displayable characters include the standard 96 text-characters with the upper and
lowercase alphabet; 64 graphics characters; and 160 special TRS-80 characters. In
addition, there are numerous control and space-compression characters. Some of
the character sets can be switched in and out by BASIC and other programs.

Keyboard

The keyboard allows entry of all the standard text and control characters. It also
includes a 12-key section for convenient numeric entry. From the keyboard, you
can select either all-capitals or upper and lowercase entry. The key is
designed to return control to you during any operation, including cassette
input/output or line printer output. Every key has an auto-repeat feature.

LIAl

TRS-80 MODEL il

Z-80 Microprocessor

This is the central processing unit—where all the *‘thinking’” is done. In the Model
I, the microprocessor operates at a speed of over two million cycles per second.

Read Only Memory (ROM)

This is where the Computer’s built-in programs are stored, including the TRS-80
BASIC language. TRS-80 BASIC is fully compatible with the Level Il language used in
Model I TRS-80’s. Each time you power-on the Computer, this ROM program takes
charge of the microprocessor, enabling you to type in simple BASIC-language
instructions.

The Model III contains a ** 14K”” ROM, meaning it contains 14 * 1024 = 14336
characters (*‘bytes’”) of permanently programmed memory.

Random Access Memory (RAM)

This is where your programs and results are stored while the Computer is on. It is
erased when you turn the Computer off.

The Model I1I can be equipped with 16K, 32K or 48K of RAM (1K = 1024 bytes).

Peripherals

These are devices you can add to your Computer to increase its usefulness in
programming and data storage. The Model III contains the necessary ‘‘interfaces’’
to simplify the addition of many peripherals.

Cassette

For long-term storage of programs and data, simply connect a cassette recorder to
the Computer, and save the information on tape.

For program storage, you may select either High or Low transfer rates (use Low for
compatibility with Model I, High for faster saves and loads).

1/2

mabCBATION

Printer

You may connect any Radio Shack *‘parallel interface’’ printer to the Model III;
this will give you ‘‘hard-copy’’ capability for program listings, reports, mailing
lists, invoices, etc.

Other Enhancements

The Model III contains space for a mini-disk controller and one or two mini-disk
drive units. The Computer will accommodate one or two external drive units as
well.

With a one-, two-, three- or four-drive system, you will be able to store and retrieve
programs and data both quickly and reliably. Your Computer will then be under the
control of TRSDOS™, the powerful Radio Shack Disk Operating System.

You can also add an internal RS-232-C serial interface. This will allow your
computer to communicate with an RS-232-C equipped computer, serial line printer
or other serial device.

1/3

b ERATION

2 / Installation

Carefully unpack the Computer. Remove all packing material and save it in case
you ever need to transport the Computer. Be sure to locate all cables, papers, etc.,
that may be included in the shipping carton.

Place the Computer on the surface where you’ll be using it. An appropriate power
source should be nearby, so that no extension cord will be required.

Do not connect the Computer to the AC power source yet.

Connection of Peripherals

Before connecting any peripherals (for example, line printer and cassette recorder),
make sure the Computer and the peripheral devices are turned off.

Connect all peripherals to the appropriate jacks on the bottom and rear of the
Computer. Refer to Figure 1 for location of connection points. For interconnections
between cables and peripherals, refer to the Owner’s Manual supplied with the
peripheral device.

Note: All cables should exit to the rear of the unit so that no binding occurs.

21

TRS-80 MODEL il

o On/Off Switch e /0 Bus Jack. For future expansion.

e Disk Expansion Jack. Shown with cable e Cassette Jack. Shown with cable con-
connected. Cable is supplied with external nected. Cable and cassette recorder are
drives (optional/extra). optional/extra. Black mini-plug connects to

recorder EAR; gray mini-plug to recorder

Q Parallel Printer Jack. Shown with cable con- AUX; gray submini-plug to MIC REMote con-
nected. Cable and printer are optional/extra. trol.

@ rs-232-C Jack. Shown with cable @ AC Power Cord.
connected. Cable and RS-232-C Interface
are optional/extra. e Video Contrast Adjustment.

e Video Brightness Adjustment.

Figure 1. Connection of peripherals and location of controls.

e e e e R
22

OPERATION

Connection of a Cassette Recorder

The following instructions use the CTR-80A recorder (Radio Shack Catalog Number
26-1206) as an example. If you use a different recorder, connection and operation
may vary.

Note: You do not need to connect the Cassette Recorder unless you plan to record
programs or to load taped programs into the TRS-80.

A TRS-80 to Cassette Recorder connection cable is included with the CTR-80A; we
suggest that you use this specially designed cable.

1. Connect the short cable (DIN plug on one end and three plugs on the other) to the
TAPE jack on the back of the Computer. Be sure you get the plug to mate
correctly.

2. The three plugs on the other end of this cable are for connecting to the recorder.

3. A. Connect the black plug into the EAR jack on the side of the recorder. This

connection provides the output signal from the recorder to TRS-80 (for
loading Tape programs into TRS-80).

B. Connect the larger gray plug into the AUX jack on the recorder. This
connection provides the recording signal to record programs from the
TRS-80 onto the tape.

Leave the AUX plug in whether you are recording or playing back
cassette data.

C. Connect the smaller gray plug into the smaller MIC jack on the recorder.
This allows the TRS-80 to automatically control the recorder motor (turn
tape motion on and off for recording and playing tapes.)

Note: Do not plug a remote microphone or adummy plug into the larger MIC jack.

Connection to an AC Power Source

Make sure the Computer and all peripherals are off.

The AC Power Cord exits from the rear of the Computer. Connect it and all
peripherals to an appropriate power source. Power requirements for Radio Shack
products are specified on the units and in the Owner’s Manual Specifications.

For convenience, you may connect all components to a single *‘power strip’” such
as Radio Shack’s 26-1451 Line Filter. This will allow you to turn on the entire system
with a single switch. Take care not to exceed the current capacity of the power strip.

2/3

OPERATION
3/ Operation

Power-On
The following instructions explain how to start up and use the Model [l as a
ROM-based system only.

If you have a Disk System and are going to load TRSDOS, follow the power-up
instructions given in the Model III Disk System Owner’s Manual. If you have a
Disk System but you are not going to load TRSDOS, read the instructions later in this
chapter.

The Computer and all peripherals must be off.

First turn on all peripherals, then turn on the Computer. (If you have all the
components connected to a power strip, just turn on the power strip.)

After a few seconds, the following message should appear on the Video Display:
Cass?

The meaning of this message will be explained later.

If the message does not appear:

A. The Video Display may need Brightness or Contrast adjustment. See Figure 1
for location of these controls.

B. If the message still doesn’t appear, then turn off the entire system; recheck all
connections, and try again. For further assistance, see ‘ “Troubleshooting and
Maintenance.”’

Do not turn any peripherals off while the Computer is in use; to do so could cause
abnormal operation (the Computer could restart or ‘‘hang up’’, requiring you to
reset or turn the system off and on again).

31

TRS-80 MODEL Ili

RESET

RESET is the orange-colored button at the upper right corner of the keyboard.
To ““start over’’ at the power-on message, you do not have to turn the unit off and
on again. Pressing the RESET button will have the same effect.

Note: Resetting the Computer does not erase the contents of RAM. However, the
BASIC language interpreter will start over, thus ‘“losing’” any program or data you
had in memory.

To interrupt a program or operation without losing your BASIC program and data,

hold down the (BREAK) key.

Power-Off

First turn off the Computer, then all other peripherals.

If you turn the Computer off for any reason, leave it off for at least 15 seconds before
turning it back on again. The Computer’s power supply needs this time to discharge
its stored energy before starting up again.

Whenever you turn off the Computer, all programs and data are erased. So be sure
to save your information (e.g., on cassette) before turning off the Computer.

Start-Up Dialog

When you turn on or reset the Computer, it asks you two questions. First:
Cass?

This question lets you determine the rate at which programs and data will be
transferred to and from cassette. You can select either Low (500 baud) or High (1500
baud). Type

L
for Low, or

H
for High.

32

OPERATION
e e s e

If you press without typing anything, High will be used.
For further details, see ¢Using the Cassette Interface.”’
Next the Computer will ask:

Memory Size?

This question lets you set an upper limit to the RAM which will be used to store and
execute your BASIC programs. Simply press in response to this question.
This tells the Computer to make the full amount of RAM available for use by your
BASIC program.

Advanced programmers may want to reserve some memory for a
machine-language ("Z-80") program or subroutine. Instructions for doing this are
included in the ‘‘Technical Information’’ chapter.

After you respond to the ‘‘Memory Size’’ question, BASIC will start with this
message:

Radio Shack Model lll Basic
(c)’80 Tandy

READY

>

The Computer is now ready for use.

3/3

TRS-80 MODEL Ili
A

Modes of Operation

BASIC has four modes of operation:

® Immediate mode—for typing in program lines and immediate lines

® Execute mode—for execution of programs and immediate lines

® Edit mode—for editing program and immediate lines

® System mode—for loading machine-language tapes and for transferring control
to machine-language programs

Immediate Mode
Whenever you enter the immediate mode, BASIC displays a header and a special
prompt:

READY (header)
>H (prompt followed by blinking block ‘‘cursor’’)

While you are in the immediate mode, BASIC will display the prompt at the
beginning of the current logical line (the line you are typing in).

In the immediate mode, BASIC does not take your input until you complete the
logical line by pressing (ENTER). This is called ‘‘line input’’, as opposed to
“‘character input’’.

Interpretation of an Input Line

BASIC always ignores leading spaces in the line—it jumps ahead to the first
non-space character. If this character is not a digit, BASIC treats the line as an
immediate line. If it is a digit, BASIC treats the line as a program line.

For example:

PRINT"THE TIME I1S”; TIME$
BASIC takes this as an immediate line.
If you type:

10 PRINT "THE TIME IS”; TIME$
BASIC takes this as a program line.
Immediate Line

Animmediate line consists of one or more statements separated by colons. The line
is executed as soon as you press (ENTER). For example:

CLS: PRINT "THE SQUARE ROOT OF 2 I1S": SQR(2)
is animmediate line. When you press (ENTER), BASIC executes it.

sl e e T e S

3/4

OPERATION
e R

Program Line

A program line consists of a line number in the range [0,65529], followed by one or
more statements separated by colons. When you press (ENTER), the line is stored in
the program text area of memory, along with any other lines you have entered this
way. The program is not executed until you type RUN or another execute command.
For example:

100 CLS: PRINT "THE SQUARE ROOT OF 21S"; SQR(2)

is a program line. When you press (ENTER), BASIC stores it in the program text area.
To execute it, type:

RUN (ENTER

Special Keys in the Immediate Mode

The question mark can stand for the commonly used keyword
PRINT. For example, the immediate line:

?"HELLO.”

is the same as the immediate line:
PRINT"HELLO.”

Note: L? does not mean LPRINT.

This abbreviation can be used in a program, too.

O The period can stand for ‘ ‘current programline’’, i.e., the last
program line entered or edited. The period can be used in most
places where a line number would normally appear. For example,
the immediate line:

LIST.

tells BASIC to list the current program line.

The single-quote tells BASIC to ignore the rest of the logical line. It
is an abbreviation for the BASIC keyword REM. When used in a
multi-statement line, it does not have to be preceded by a colon.
For example, when you type in the line:

PRINT 1+1; '2+2

BASIC will print the sum 1 + 1 butnot 2 +2.
This abbreviation can be used in a program, too.

SHIFDM(® Causes the Computer to print the Display contents to the line
printer, if available. Press (BREAK) to interrupt this operation. This
key sequence works in the other modes too.

3/5

TRS-80 MODEL lil

Execute Mode

Whenever BASIC is executing statements (immediate lines or programs) it is in the
execute mode. In this mode, the contents of the Video Display are under program
control.
Special Keys in Execute Mode

SHIFD (@ Pausesexecution. Press any key to continue.

BREAK) Terminates execution and returns you to the command mode.

Edit Mode

BASIC includes a line editor for correcting program lines. To edit a program line,
type in the command:

EDIT line number
where line number specifies the desired line.

When the editor is working on a program line, it displays the number of the line
being edited.

In the edit mode, the Keyboard input is character-oriented, rather than
line-oriented. That is, BASIC takes characters as soon as they are typed in—without
waiting for you to press (ENTER).

See the chapter on editing (Section 2) for details.

System Mode

In this mode, you can load and execute machine-language programs. By
“‘machine-language’’, we mean the set of machine instructions recognized by your
Computer’s Z-80 microprocessor. In this manual, we will usually call it "Z-80"
programming, in contrast to BASIC programming.

Youdon’t have to understand the Z-80 language to use some of the programs
available. For example, several Radio Shack games are written in Z-80 code rather
than in BASIC. To load such programs from tape, you use the System Mode.

Z-80 programming opens up whole new worlds of possibilities, but it is somewhat
more demanding than BASIC programming.

3/6

maP CRATION

The Technical Information chapter in this manual is written for those who are
familiar with the Z-80 instruction set and other fundamental machine concepts. If
you would like to explore these subjects, read:

TRS-80 Assembly Language Programming, by William Barden, Jr. Radio Shack
Catalog Number 62-2006.

Although the book was originally written for the TRS-80 Model I, it applies almost
exactly to the Model I1I as well.

For further details, see ‘‘Cassette Interface’’ in this Operation Section, and SYSTEM
inthe Language Section.

Sample Session

This section will give you a step-by-step example of what’s needed to type in a
program and run it. We will be showing you the Computer/operator dialog exactly
as it appears on the Display. If you have never used a computer keyboard before,
read Using the Keyboard before trying this sample session.

Youdon’tneed to know BASIC programming to go through this session—it is just
an exerciser. If you are curious about the words used in this program, look them up
on the Quick Reference Card supplied with your Computer, or in the Index of this
manual.

Special Notation Used in this Dialog

BOLDFACE MATERIAL Provided by the Computer—you don’t type
itin.

ENTER Means ‘‘Press the (ENTER) key.””

SHIFT This tells you to use the upper/lower

case—caps only switch. You do this by
pressing and (@ together.

This means *‘press the & key’’ to skip over
to the next eight-column boundary. We
usually do this just for visual effect.

3/7

| TRS-80 MODEL Il

Answering the Start-Up Questions

Reset the Computer. Then follow this session.
Cass?
Memory Size?
Radio Shack Model lll Basic
(c) 80 Tandy
READY
>E

The blinking block after ‘>’ is the *‘cursor’’. It tells you where the next character
you type will be displayed.

Now continue:

>NEW

READY

>AUTO

10 CLS (ENTER)

20 PRINT "HI—I'M YOUR TRS-80 MICROCOMPUTER!" (ENTER
30 PRINT "(SHIFT) ® What makes me so smart? "(SHIFT)
40 PRINT "(SHIFT) @ Millions of these: "(SHIFT) @) (ENTER)

50 PRINT CHR$(21) (ENTER

60FOR| = 1 TO 256 (ENTER)

70 PRINT CHR$(253); CHR$(254); (ENTER)

80NEXT |

90 PRINT CHR$(21)

100 END

110 (BREAK)

READY

> @

Now the program is in memory. To look at it, type:

>LIST (ENTER

It should look like this:
ia CLg
2@ OPRINT "HI!' I'M YOUR TRS-8 MICROCOMPUTER!®
3@ PRINT "What makes me zo zmapt?®

4@ PRINT "Millions of theze:®

98 PRINT CHR$(21)

6 FOR I = 1 TO 254

78 PRINT CHR$CZ53) 5 CHR$(3%4) 3
B NEXT I

@ PRINT CHR$(Z1)

1@ END

3/8

LOPERATION

Check each line. Don’t worry about spacing; however, if anything else is different,

simply re-type the incorrect line. For example, suppose you mistakenly type in line
90 like this:

90 PRINT CHR$(201)
To correct it, simply type:

>90 PRINT CHR$(21) (ENTER
>H

When everything is correct, you can run the program by typing:
>RUN (ENTER

3/9

OPERATION
R R e e)

4 / Using the Keyboard

The keyboard allows entry of all the standard text and control characters. As with
ordinary typewriters, use (SHIFT) to enter the upper symbol on those keys contain-
ing two symbols. For example, toentera"!”, press SHIFD (1).

Capitals and Lower Case (SHIFT

The A-Z keys can produce either upper or lowercase characters. There are two
modes of operation: CAPS, in which the A-Z keys always produce capital letters; and
ULC (upper/lowercase), in which the A-Z keys produce lowercase unless you press

SHIFTD).

When you start the Computer, the keyboard is in the CAPS mode. To switch to ULC,
press SHIFT(®. To switch back, press (SHIFD @ again. (SHIFTD @ is a ‘‘toggle’’:

each time you press it, you switch from one mode to the other.

Special Keys

Certain keys have special functions in BASIC. Rather than accepting them as
keyboard data, BASIC performs the specified function.

Key Function

S| Backspaces and erases the last character typed.

& Tabs over to the next eight-column boundary.

SHIFD® Starts over at the beginning of the line.

SHIFD® Converts to 32 characters/line.

SHIFD@ Pauses program execution. Press any key to continue.

ENTER Enters the line. BASIC will not interpret a line until you
press (ENTER).

CLEAR Cancels the current line, erases the display, converts to

64 characters/line, and positions the cursor to the upper
left corner (‘*home’’).

a1

TRS-80 MODEL il

Special Keys, continued.

BREAK Interrupts the current program or operation and
prepares the Computer for another keyboard command.
Use to cancel a cassette or line printer operation, or to
break out of a BASIC program.

SHIFD D®) Activates the Print Screen function, copies the contents
of the Screen to the Printer. Press (BREAK) to terminate
this function and return to the immediate mode.

Other Features

Every key has arepeat feature: when you hold a key down for approximately one
second, that key begins producing a stream of characters.

The keyboard includes a 12-key section for convenient numeric entry. Each of
these keys is equivalent to the matching key on the standard keyboard section.

Control Codes*

* If you are unfamiliar with the concept of character codes, see the ASCII entry in the
Glossary (Appendix). Also see the table of character codes in the Appendix.

You can produce 32 special control characters (ASCI Codes 0-31) from the
Keyboard. For example,

Key ASCIlIName - Code

«© Backspace 8

S Tab 9

® Line Feed 10
ENTER Carriage Return 13

4/2

You are not limited to these specially labeled keys. A special two-key combination
allows the regular text keys to create additional control characters. Use this
procedure:

1. Holddown (SHIFT
2. Holddown @)

3. While holding down (SHIFT) and (D), press the desired character. For example:
SHIFT) ®© = ““Control C”* = Code # 3.

For a complete list of keyboard characters available, see the Appendix.

4/3

OPERATION
5/ Using the Video Display

Character Size
There are 16 lines on the display, and two character sizes: normal (64 characters per
line—*“cpl’’), and double-size, or 32 cpl.

The Computer starts in the 64 cpl mode. To change to 32 cpl, press (SHIFD®) in the
immediate mode or execute the BASIC statement:

PRINT CHR$(23)

To return to 64 cpl, press (CLEAR) in the command mode, or execute the BASIC
statement:

CLS

Cursor

The cursor indicates the current display position. When you start BASIC, the cursor
is a blinking block. You can change the cursor character and you can make it solid
(non-blinking).

Memory location 16412 contains the blink/non-blink status. When it contains a
zero, a blinking cursor will be used. When it contains a non-zero value, a
non-blinking cursor will be used.

For example, to make a solid cursor, execute the BASIC statement:
POKE 16412, 1

To make a blinking cursor, execute the BASIC statement:
POKE 16412,0

Memory location 16419 contains the ASCII code of the cursor character. When you
start BASIC, this address contains 176. To change the cursor, use the POKE
statement. For example,

POKE 16419, 63

changes the cursor to a"?", since 63 is the ASCII code for a question-mark.

5/1

TRS-80 MODEL il

You can select any ASCII code from zero to 255.

To restore the cursor to its original character, execute this BASIC statement:
POKE 16419, 176

To turn the cursor on in the execute mode, execute the statement
PRINT CHR$(14)

To turn it off, use

PRINT CHR$(15)

Scroll Protection

Display “‘scrolling’’ occurs when the Computer moves all the text up one line to
make room for a new line on the bottom row of the Display. When scrolling occurs,
the top line on the Display is erased from the Display.

The Model Il will let you protect from scrolling up to seven lines on the top of the
Display. For example, suppose you are printing a table. You can put the column
headings in a scroll protect area, so they will not be lost when scrolling takes place.

Memory location 16916 controls the size of the scroll protect area. A zero in this
one-byte location means no lines are protected. A one means one line (the top line)
is protected. And so forth.

For example, to protect the top four lines from scrolling, execute the BASIC
statement:

POKE 16916, 4

To restore the display to its original condition (no scroll-protect), execute the BASIC
statement:

POKE 16916,0

If you store a value greater than seven in this address, the Computer interprets the
value in modulo eight. That is, the number is divided by eight and the remainder is
used.

The following program demonstrates the scroll-protect feature:

10 CLS: POKE 1691643 "PROTECT TOP 3 LINES
£ PRINT "THESE TOP THREE LINES WILL NOT RE SCROLLED"
3@ PRINT "BUT THE REST OF THE SCREEN WILL."

L Y OO

S0 FOR I = 1 TO 100

6@ PRINT "THIS LINE IS IN THE NON-PROTECTED AREA S0 WILL SCROLL"

7@ NEXT I
B0 POKE 169160 "REMOVE SCROLL PROTECTION

5/2

OPERATION

Text Characters

The Model I1I Display can produce the standard ASCII text characters, including the
upper and lowercase alphabet.

All text characters are created on an eight-by-eight matrix for excellent definition.

The following BASIC program will display all 96 text codes and characters:

2@ OFOR T o= 32 TO 127
36 PRINT & (I-32) % 8. I3 CHR®%(I1)3
4@ NEXT I

Many of these characters can be keyed in directly from the keyboard; others can
only be generated by reference to their ASCII codes.

Note: The (D key is echoed on the display as [instead of as an up-arrow. This is
because Model IIT produces standard ASCII characters on its display. However, if
the program calls for an up-arrow, the left-bracket will serve the same purpose.

Graphics Characters

The Model ITI Display has 64 graphics characters, consisting of all possible on-off
combinations in a two-by-three matrix:

The graphics characters are produced by codes 128 through 191. The following
program will display them all:

10 CL.B

2 FOR T = 128 TO 191

i PRINT @& (I-128) % 8+ I35 CHR$(I)s
4@ NEXT I

5[13

TRS-80 MODEL Il

Space Compression Characters

When you start BASIC, characters 192 through 255 are defined as space compression
codes: 192 generates zero spaces: 193, one space; and so forth, up to 255, which
generates 63 spaces.

These codes are useful for storing Video Display text in a minimal amount of
memory. For example, the following line contains 55 characters (superior numbers
indicate the number of blank spaces between letters):

21 spaces 18 spaces
NAME ADDRESS PHONE

There are two sequences of blanks containing a total of 39 characters. By replacing
the two space-sequences with two compression codes, we can save 39 — 2 = 37
characters.

When the data is displayed, the space compression codes will be *‘expanded’” into
the appropriate number of spaces.

The following BASIC program illustrates this example:

3 CLS

1 POKE 16526s 165 LER OF $INITIO ENTRY ADDRESS

20 PORKE 16527, @ " MSE

3@ X = UBR(@) *CALL $INITIO

4@ CLEAR 100

2@ A% = "NAME" + CHR$(192+21) + "ADDRESS" + CHR$(192+18)
" PHONE"

6f1 PRINT "THE LENGTH OF THE STRING IS"3; LEN(A%)
7@ PRINT "HERE IT IS:®
B PRINT A%

Special Characters

The Model I1l also features 96 special characters. The first 32 may be displayed by
POKEing the appropriate code into video RAM (addresses 15360 to 16383); the
remaining 64 may be displayed via the PRINT statement.

This program will display the first 32:

18 CLS

20 FOR I = @ TO 31

30 PORKE 15360 + I % 16y 1
40 NEXT I

9@ PRINT a &64@, "y

e

5/4

e

OPERATION

The remaining 64 must first be ‘‘switched in’* and then may be displayed via PRINT.
Codes 192 through 255 normally function as space compression codes; however, a
software switch will activate the special character set. The statement:

PRINT CHR$(21)
switches back and forth between space compression and special characters.

Another software switch selects an alternate set of special characters (Japanese
Kana characters). Each time you execute the statement

PRINT CHR$(22)
the active/inactive sets are swapped.

The following program will switch in the special characters and display both sets of
them.

5 CL.S

1 POKE 16526 105 TLER OF $INITIO ENTRY ADDRESS
20 POKE 16527 @ *MGE

3@ X = USR(@) *CALL $INITIO

4@ PRINT CHR®$(Z1) TEWITCH IN SPECIAL CHARACTERS

5@ INPUT "PRESS <ENTER> TO SEE SPECIAL CHARACTERS"3: X
6B FOR I = 192 TO 253
70 PRINT CHR#%(I)3

80 NEXT I
9@ PRINT
1@ INPUT "PRESS <ENTER: TO SWITCH TO ALTERNATE SET"3: X
110 PRINT CHR®(ZE) 5 *GWITCH IN ALTERNATE SBET

120 INPUT "PRESS <ENTER> TO RETURN TO NORMAL AND END"3; X
130 PRINT CHR$(22)3 CHR$(Z1)

5/5

OPERATION

6 / Using the Cassette Interface

Model I1I’s built-in cassette interface allows you to store data and programs with a
cassette recorder such as Radio Shack’s CTR-80A, Catalog Number 26-1206.

Connect the recorder to the Computer according to Figure 1 in this manual; for
further connection instructions, refer to the cassette recorder owner’s manual.

Cassette Transfer Speed

As explained previously, you select either Low or High cassette speed when you
start BASIC.

If you want to load Model I Level Il programs, you must select Low.

(The actual speed for Low is 500 baud, which is approximately 63 characters per
second; for High, 1500 baud, or 190 characters per second. For short programs, you
won’t notice a three-to-one difference in loading times, due to the *‘overhead’’
required by any taped data. However, for longer programs, the difference in
loading/saving times will approximate three-to-one.)

You do not have to restart BASIC to change the cassette speed. This speed is
determined by the contents of memory address 16913. When this one-byte location
contains zero, Low speed (500 baud) is used; when it contains any non-zero value,
High speed (1500 baud) is used.

For example, to select 500 baud, execute the BASIC statement:
POKE 16913, 0
To select 1500 baud, execute the BASIC statement:

POKE 16913, 1

6/1

TRS-80 MODEL il

Loading Errors

There are three messages that may appear in the upper right of the Display during a
tape input operation. They tell you that the tape operation was unsuccessful and
needs to be repeated.

. Message Meaning
cr Checksum Error during loading of a SYSTEM tape
D~ Data Error during loading of a BASIC program
BK You pressed (BREAK) and cancelled the operation

The first two errors may be caused by an incorrect volume setting. Adjust the
volume and try again. If you still have problems, recheck the cassette recorder
connections. Another possible cause is dirty recorder heads. Clean the heads as
explained in the cassette owner’s manual. If none of this helps, the data on the tape
may have been destroyed by static electricity or some other cause.

Saving a BASIC Program on Tape

When you want a long-term copy of a BASIC program (one that won’t have to be
typed in again), simply save it on tape with the CSAVE command.

The program should be in memory. Be sure you have selected the desired cassette
transfer speed (500 or 1500 baud). In general, you should use 1500 baud, since it is
faster and requires less tape.

1. Insertablank cassette into the recorder (use Radio Shack’s leaderless tape for
best results).

2. Prepare the recorder to RECORD.

3. Type :

CSAVE"P" (ENTER

The Computer will save the program on tape.

When the process is completed, the Computer will display:

READY
>H

In this example, we used "P” as the file name; you can choose any single character
except a double-quote. Enclose the character in double-quotes as shown in our
example.

“

6/2

OPERATION
S S

It is a good idea to save the program at least twice, preferably on separate cassettes.
That way, if one cassette is lost or erased, you have an extra copy.

When you want to load the program in later, you can specify the file name, in which
case BASIC will search for that file name; or you can omit the file name, in which
case BASIC will load the first program on the tape.

Loading a BASIC Program from Tape
Be sure the Computer’s cassette speed matches that of the recorded program (the
speed at which it was CSAVEd).

1. Prepare your recorder to PLAY the recorded cassette. Adjust the volume to the
level recommended for 500 or 1500 baud. See Figure 2 on the next page.
2. Type:

CLOAD (ENTER

The Computer will load the first program on the tape. While the program is
loading, two asterisks will appear on the upper right of the Display. The one on
the right will blink after every 64th character of data is received.

When the program is loaded, the Computer will display the message:

READY
>H

3. Type:
LIST (ENTER
to list the program you have just loaded (just for verification).

4. Youmay now run the program by typing:

RUN (ENTER

6/3

TRS-80 MODEL lii

How to Search for a Program

If the tape contains different programs on the same side, you can make the
Computer search through them until it reaches the desired program. To do this, just
specify the name of the program. For example, if the program is named "p", then
type in this command:

CLOAD"P" (ENTER

While the Computer is skipping a non-matching program, it will display the file
name of that program.

Note: If the program you named is not on the tape, the Computer will continue to
wait for it, even after the tape has run out. Hold down the (BREAK key until the
Computer returns with the message:

READY

>

Recorder User-Generated Pre-Recorded From
Model Radio Shack
CTR-80, 80A 5-7 4-6

Figure 2. Recommended levels for loading programs from
tape.

6/4

OPERATION |

e R B B e

Loading a SYSTEM Tape

In addition to BASIC programs, you may load machine-language programs from
tape. Such programs are stored in a different format on the tape; we call them
SYSTEM tapes. Radio Shack sells several machine-language programs on cassette,
for example, Micromusic and Editor/Assembler.

You can also create your own SYSTEM tapes, using the Editor/Assembler Package.

Before loading the tape, be sure the Computer’s cassette speed matches that of the
recorded program.

1. Prepare your recorder to PLAY the recorded cassette. Adjust the volume to the
level recommended in Figure 2.

2. Type:
SYSTEM (ENTER

The Computer will display the monitor mode prompt:
*?

3. Typeinthe program’s file name. For example, if the program is named
EDTASM, you would type:

EDTASM

The Computer will load the program. While the program is loading, two
asterisks will appear on the upper right of the Display. The one on the right will
flash after every 64th character of data is received.

4. When the Computer has loaded the program, it will display another monitor
prompt:

*?
What you do next depends on the program you have just loaded.

A. If you want to load another program, then prepare the next cassette tape and
repeat Step 3.

B. Ifyou want to return to BASIC, then press (BREAK).

C. If you want to run the machine-language program you just loaded. then type in a
slash symbol **/°” followed by the ‘‘entry address’” and press (ENTER). or simply
typeinthe **/”” and press ENTER). Specific instructions will be provided with
the SYSTEM tape.

6/5

TRS-80 MODEL lii

For example, to start the program at address 32000, type:
*?/32000 (ENTER)

To start the program at the address specified by the SYSTEM tape, type:
*?/

6/6

OPERATION
A S R

7 / Using A Line Printer

Any Radio Shack *‘parallel interface’’ printer may be connected to the Model I11.
There are some differences in printer functions available, so check in the printer
owner’s manual for these details.

Line Printer vs Video Display
Output

Output to the line printer is similar to display output; in fact, for the two major
display output operations, there are two matching line printer output operations:

Video Display Line Printer
PRINT LPRINT
LIST LLIST

These are described in the BASIC Language Section of this manual.

When you try to output information to the printer, the Computer will first see if a
printer is connected and ready to accept the data. If it is not, the Computer will
simply wait until the printer is available. During this time, you will not be able to
type in instructions from the keyboard.

To regain keyboard control in this situation, hold down the (BREAK) key until the
Computer displays

READY
>

Certain of the Video Display features are not available on the printer. For example:

® The graphics and special character sets cannot be output to the printer. However,
your printer may have its own special characters or ‘‘graphics’’. Check in the
owner’s manual.

® The CLS and PRINT @ statements have no line-printer counterparts.

7

TRS-80 MODEL IlI

Printer Control Features

Output to a printer involves several variables:

® Maximum line width (How many print columns are there?)

® Page length (How many print lines are on a page?)

® Printer status (Is the printer connected and ready to receive data and print it?)

In this section, we will explain how to set up the Model I1I to control all these
variables.

Setting the Maximum Line Length

In Model I1I BASIC, you can preset the maximum line length. If a line exceeds the
preset length, the Computer will automatically insert an end of line (carriage return)
so that the rest of the line will be output on a new line. The following paragraphs
explain why you may want to do this.

One important difference between display output and printer output is the
maximum line length. (A *‘line”’ is a stream of data characters terminated by a

carriage return (ENTER).)

The Model III Display has a maximum line length of 64 characters. If you PRINT a
line longer than this, the Computer simply ‘‘wraps around”’ to the beginning of the
next line.

Printers have a maximum line length, too, but this length differs for various
models. The response to an overflow (longer than maximum-length) line also
varies. Some models wrap around to the next line automatically. Others may lose
the extra data, and may begin abnormal operation when the line is too long.

Another consideration is paper width. Suppose your paper is only wide enough to
hold 80 characters—but the printer will accept lines of up to 132 characters. In this
case, if you send a line longer than 80 characters, the printer will print part of the
information past the edge of the paper.

How to Set the Line Length

Memory address 16427 contains a value equal to the maximum line length less two.
For example, to set the maximum line length to 64, execute the BASIC statement:

POKE 16427, 62

Since the Display is 64 characters per line (cpl), this setting will make line printer
output match Video Display output.

Lo e e SRR S L

7/2

OPERATION
S i

When address 16427 contains a value of 255, the maximum line length feature is
disabled. No matter how long the line is, the Computer will not insert carriage
returns in it. Remember, though, some printers automatically do this when the line
exceeds a specified length.

When you start BASIC, address 16427 contains a value of 255, so the maximum line
length function is disabled.

Page Controls

In many printer applications, you want to control the number of lines that are
printed on a page. For example, in printing forms or reports, when a given number
of lines have been printed, you want to advance the paper to the top of the next
page.

Model Il BASIC has several features to help you do this. Itkeeps track of the
following information:

Data Memory Address

Page size: number of lines per 16424
page plus one. Initialized
t067 =66 + 1.

Line count: number of lines 16425
(carriage returns) already

printed plus one.

Initialized to one.

Most printers output six lines per inch; therefore standard 11” paper allows 66 lines,
which matches BASIC’s initialization value.

To change the maximum lines/page setting, store the desired number of lines plus
one in 16424. For example, if your paper contains 88 lines per page, then execute this
BASIC statement:

POKE 16424, 89

When you start the Computer, position the paper to the top of the page (*‘top of
form’”). That way BASIC’s initial page information is correct. Each time BASIC
outputs a line (i.e., a carriage return), the line count is incremented.

Note: If your printer’s maximum line-length is shorter than BASIC’s maximum line
length, the printer will insert carriage returns that BASIC isn’t allowing for.
Therefore BASIC’s line count will not be accurate.

7/3

TRS-80 MODEL lil

To prevent this from happening, make sure BASIC’s maximum line length (stored in
address 16427) is no greater than that of your printer. You can find your printer’s
maximum line length in the printer owner’s manual.

To do an automatic top of form (advancing the paper to the top of the next page),
print the ASCII *‘Form Feed’’ code, decimal 12. For example, execute the BASIC
Statement:

LPRINT CHR$(12)
The paper will advance by the following amount:
Top of Form = Max. lines/page — Lines already printed

Each time you print a form feed, CHR$(12), BASIC resets the line count
automatically.

Sometimes you may want to reset the line count, for example, after manually
advancing the paper to the top of form. To do this, store a one in 16425:

POKE 16425, 1

Checking the Printer Status

Unlike the Video Display, the printer is not always available. It may be
disconnected, off-line, out-of-paper, and so forth. In such cases, when you try
printer output, the Computer will wait until the printer becomes available. It will
appear to be ‘‘locked up’’. To regain keyboard control (and cancel the printer

operation), press (BREAK).

Suppose you have a program which uses printer output. If a printer is not available,
youdon’t want the Computer to stop and wait for it to become available. Instead,
youmay want to print a message like "PRINTER UNAVAILABLE" and stop.

To accomplish this, you need to check the printer status. The status is stored in
address 14312. AND this value with 240. The result should equal 48. If it doesn’t, that
means the Printer is unavailable for some reason, and printer output is not possible.
For example, your program could execute these statements:

1800 ST = PEEK(14312) AND 240

12@ IF 8T% < > 48 THEN PRINT "PRINTER UNAVAILABLE.": STOP
138 PRINT "PRINTER 18 AVAILABRLE"

7/4

OPERATION

Print Screen Function

Model IIT has a very handy feature to give you a *‘snapshot’” of whatever is on the
Display. It will work whenever the Computer is scanning the keyboard (BASIC’s
Immediate, Execute, Edit and System Modes). It does not work during cassette,
printer or serial I/O.

When you want to copy the Display contents to the printer, simply press:
GHIFD O ®
together. The Computer will stop what it’s doing and print the screen.

The Computer will print the entire display, blanks and all. If you are only interested
in printing the top portion of the display, press (BREAK) when those lines have been
printed.

If a printer is not available, the Computer will wait until it becomes available or

until you press (BREAK).

If the Display contains special characters or graphics characters, they will be
displayed as periods.

Note: You can also activate the Print-Screen function via the BASIC USR function.
See $PRSCRN in the Technical Information chapter.

7/5

OPERATION |
Joo e e e e

8 / Using the rs-232-c Interface

Whatis an Interface?

It’s a generalized means of communication between your TRS-80 and some external
device, providing the necessary conventions regarding data-identification,
transmission rates, send-receive sequences, error-checking techniques, etc.
However, an Interface does not provide the programming necessary to use any
particular TRS-80/ external device system.

For example, having the Interface installed does not automatically enable you to
send BASIC programs from one TRS-80 to another; to output to a line printer via the
Interface; etc. Such applications require ‘ ‘driver programs’’ which must be
custom-designed for the equipment you intend to use.

The Radio Shack RS-232-C Interface is designed to meet the EIA standards.
However, we cannot guarantee that it will work with all so-called *‘RS-232-C
compatible’’ devices. Nor do we commit ourselves to provide engineering and
programming support for such applications, or other special custom-use situations.

We do, however, guarantee that our Interface will function correctly with all our
own RS-232-C equipment.

The term RS-232-C refers to a specific EIA (Electronics Industries Association)
standard which defines a widely accepted method for interfacing data terminal
equipment with data communications equipment. The RS-232-C Interface is by far
the most universally used standard for interfacing data processing equipment. Most
video terminals, modems, card readers, line printers, mini-microcomputers, etc.,
utilize the RS-232-C standard for data interchange between devices.

Adding the RS-232-C to your Model III TRS-80 opens up a whole new world of
compatibility. The Computer can then be programmed to communicate with a
serial printer, telephone modem, serial display terminal -— almost any RS 232-C
device.

Note: The following information applies only if your Model III TRS-801is equipped
with the RS-232-C Interface.

8/1

TRS-80 MODEL il

Using the Model III as a Terminal

Probably the most common use of the RS-232-C interface will be to allow the Model
Il to act like a *‘terminal”” to another ‘‘host’” computer. In this application,
whatever you type on the keyboard is sent via RS-232-C to the other host computer,
and whatever the host computer sends to you is displayed on your screen.

Before going into the details of RS-232-C operation, we’ll show you a BASIC
program that sets up a simplified terminal operation.

1. Make sure the RS-232-C characteristics are set to match those of the host
computer. If they are not, then change them, as explained later in this chapter.

Note: For this BASIC Program, you must use a baud rate of 110. An equivalent
Z-80 program could use any baud rate.

2. Connect the Model I1I to the host computer via the RS-232-C. You will need a
telephone interface (modem) or other means of communication.

3. Typein and run the following BASIC program (you do not need to type in the
comments (material that starts with a single quote). The program displays
characters received via the RS-232-C, and sends characters you type in. Itis for
demonstration only, and is not meant to function as a practical terminal. Notice

there are no spaces between the ** *” in line 160.
3 DEFINT A-Z TINTEGER VARIARLE FOR SPEED
10 POKE 16890 @ TDONT WAIT FOR SERIAL I/0
15 POKE 16888, (2¥1é4)+37 TTX/RCV AT BAUD RATE 110
17 Ul = 16526 "LSEB OF USR CALL ADDRESS
18 U2 = 146527 TMEE OF USR CALL ADDRESS
2@ POKE Uls 90 THET UP UBR CALL»s LSR
3@ POKE UZs @ ? MSE
4@ X = USR(@) *CALL $REINIT
2@ RCV = 8@ TLER OF $RSRCY
&R TX = 85 LB OF $RSTX
78 CI = 16872 TCHARACTER INPUT BUFFER
8@ CO = 146880 *CHARACTER OUTPUT PUFFER
20 * CHECK FOR SERIAL INPUT
10@ POKE Uls RCV "SET UP USR CALL TO $RSRCV
118 X = USR@) *CALL. $RBRCV
120 C# = CHR%(PEEK(CI)) TLOOK AT INPUT BUFFER
130 PRINT C#3 TIF C o= @ NOTHING HAPPENS

140 7 CHECK FOR KEYROARD INPUT
1358 C$ = INKEY%

16 IF C$ = "' THEN 100 TNO REYs S0 GO CHECK SERIAL

163 PRINT Cw%s DELETE THIS LINE IF HOST PROGRAM

146 "HAS AN ECHO FEATURE

170 POKE COs ASC(CH) TPUT CHAR. INTO QUTPUT BUFFER

180 POKE Uls TX TGET UP USR CALL TO $R&TX

190 X = USR(®D) TCALL $RSTX o
200 GOTO 106 TGC CHECK SERIAL INPUT —

S

8/2

OPERATION

Programming the RS-232-C Interface

In this section, we will treat the RS-232-C just like any other input/output device, and
will explain how your BASIC program can use it. In Technical Information, we
explain how to use it in a machine-language ("Z-80") program.

For details about the RS-232-C signal conventions and theory of operation, see the
Appendix.

Selecting the RS-232-C Characteristics

Before using the R$-232-C interface to communicate with another device, you must
be sure your RS-232-C is set up to match the requirements of the other device.

So start by getting the following information about the other device. In the right
column, we list typical values used.

Characteristic Typical Values Used

Baud Rate 110, 150, 300, 600, 1200,
2400, 4800, 9600

Word Length (bits) 5,6,7,8

Parity Even, Odd, None

Stop Bits 1,2

When you start the Computer, the RS-232-C is initialized to the following ““default
characteristics’’:

Baud Rate 300
Word Length (bits) 8
Parity None
Stop Bits 1

In addition, the RS-232-C is initialized to wait for completion of character 10 before
returning. That is, if you attempt to receive a character, the Computer will wait
until a character is received; it will never return to you without a character.
Similarly, if you attempt to send a character, the Computer will wait until the
receiving device is able to accept the character.

To regain control of the Computer during a wait, hold (BREAK) until READY returns.

8/3

TRS-80 MODEL i

1/0 to the RS-232-C Interface

If the default settings are correct, you are ready to begin serial /0. To change any of
the settings, you need to re-initialize the RS-232-C interface. See ‘“To Change the
RS-232-C Characteristics’’.

There are two ROM subroutines for serial /O (both were used in the simple terminal
program):

$RSTX Send a character
$RSRCV Receive a character

Both subroutines are simple to use from BASIC via the USR function.

To Send a Character
1. The Computer should be connected to the serial device.
2. Define a USR call to $RSTX (address 85) by executing these BASIC statements:

POKE 16526, 85
POKE 16527,0

3. Send the character by storing the ASCII code in memory location 16880. Suppose
A$ contains the character. Then execute this statement:

POKE 16880, ASC(A$)
4. Make the USR call with a dummy argument:
X=USR(0)

If the Computer is using the Don’t Wait procedure, then control will return to
BASIC even if the character was not sent. If the Computer is using the Wait
procedure, control will return to BASIC after the character is sent.

5. Repeat steps 3 and 4 until all the data has been sent.

To Receive a Character
1. The Computer should be connected to the serial device.
2. Define a USR call to $SRSRCV (address 50) by executing these BASIC statements:

POKE 16526, 50
POKE 16527,0

3. Getthe character by making the USR call with a dummy argument. For example:
X = USR(0)

Upon return from the subroutine, USR returns the ASCII code of the character
received in memory location 16872. A zero indicates no value was received.

b e e S

8/4

OPERATION

If the Computer is using the Don’t Wait procedure, then control will return to BASIC
even if no character was received. If the Computer is using the Wait procedure,
control will return to BASIC after a character is received. Press to interrupt a
WAIT and regain keyboard control of the Computer.

4. Tomake this character available to BASIC, execute a BASIC statement like:
A$ = CHR$(PEEK(16872))

which stores the string value in A$. Remember, if A$ = CHR$(0), then no
character was received.

5. Repeat Steps 3 and 4 until you are through receiving data.

To Change the RS-232-C Characteristics

If the TRS-80’s default characteristics do not match the requirements of the other
device, you can change some or all of them by using (*‘calling’’) an initialization
subroutine that is stored in ROM.

Before calling $SRSINIT, you must store the desired characteristics in certain RAM
locations:

Address Contents

16888 Transmit/Receive Baud Rate Code
16889 Parity/Word Length/Stop Bit Code
16890 Wait/Don’t-Wait Switch

Transmit/Receive Baud Rate Code

The TRS-80 RS-232-C allows you to receive and transmit at different rates. For most
applications, the rates will need to be the same.

Instead of storing the actual baud rate, you store a code for the value, taken from the
table below. You select the appropriate codes for send and receive rates, and then
““pack’’ them into memory address 16888 as follows:

Send/Receive Code = (Send Code * 16) + Receive Code

For example, suppose we want to send and receive at 110 baud. Using the table on
the next page, we find that the code for 110 baud is 2. So:

Send/Receive Code = (2*16) +2 =34

8/5

In technical terms, we are storing the send-rate code in the most si gnificant four bits

TRS-80 MODEL Il

S T RSN

(“‘nibble’’) of 16888, and the receive-code in the least significant nibble.

Desired
Baud Rate

50
75
110
134.5
150
300
600
1200
1800
2000
2400
3600
4800
7200
9600
19200

Baud-Rate Codes

Error Baud Rate
(%) Code
0 0
0 1

0 2
0.016 3
0 4
0 5
0 6
0 7
0 8
0.253 9
0 10
0 11
0 12
0 13
0 14
3.125 15

Parity/Word Length/Stop-Bit Code

You pack all of this information into one byte, using the following formula:

Code = (Parityselect* 128) + (Word * 32) + (Stop * 16) + (Parityonoff* 8)
+ (Transmit*4) + (DTR *2) + RTS

where:

Parityselect = 0 forodd parity

Word

Stop

= 1foreven parity

= Ofor 5-bit words
= 1 for 6-bit words
= 2 for 7-bit words
= 3 for 8-bit words

= Ofor 1 stop-bit
= 1for2 stop-bit

Parityonoff = 0to enable parity

“

8/6

= 1todisable parity

OPERATION
e K KAy

Transmit = (to disable the transmitter
= 1 to enable the transmitter

DTR = (to set Data Terminal Ready signal low
1 to set Data Terminal Ready signal high

RTS

0 to set Request to Send signal low
= 1 to set Request to Send signal high

For example, to select 7-bit words, even parity, two stop-bits, transmit-enable, DTR
high and RTS high, calculate the code this way:

Code = (1*128)+ (2*%32)+ (1*16)+(0*8)+(1*4)+ (1*2)+(1*1])=
215

For additional information on how to determine the appropriate code
characteristics, read $RSINIT in the Technical Information Chapter and see
Appendix L.

Wait/Don’t-Wait Switch
The TRS-80 lets you choose either Wait or Don’t-Wait serial 1/0.

When you select Wait /0, the TRS-80 will not return from a serial /O call until the
operation is successful (i.e., a character is transmitted or received). Pressing
BREAK) will return control to your program.

When you select Don’t-Wait /0, the TRS-80 will return from a serial VO call even if
the operation was not successful (i.e., no character was transmitted or received).

The contents of memory location 16890 determines which procedure is used:

Contents of 16890 Procedure Used
Zero Don’t-Wait
Non-Zero Wait

8/7

TRS-80 MODEL Ili

Calling $RSINIT from BASIC

Store (POKE) the desired values into the RS-232-C control addresses (16888-16890). If
any of the default characteristics are already correct, leave those addresses
unchanged.

If you need to change the parity/word length/stop-bit code, see $SRSINIT in the
Technical Information chapter. Once you have calculated the desired codes for
baud rate, parity/word length/stop-bits and Wait/Don’t-Wait, you are ready to call
$RSINIT.

Execute the following BASIC statements to define a USR call to $RSINIT:

POKE 16526, 90
POKE 16527,0
X = USR(0)

When the last statement has been executed, the RS-232-C is initialized.

8/8

OPERATION

9 / Routing Input/Output

Model I1I lets you route I/O from one device to another. This gives your programs

more versatility.

For example, suppose you have a program that outputs to the Video Display. Now
suppose you want all display output to go to the printer. You can accomplish this
without changing the program at all, using the route capability. The source device
(in our example, the display) will then be logically equivalent to the destination
device (printer) until you re-initialize the /O drivers with SINITIO (described later).

Here are the devices that may be routed:

Device
Keyboard
Display
Printer

RS-232-C
Send
Receive

System Abbreviation
KI

DO

PR

RO
RI

91

TRS-80 MODEL Ili

To Route from One Device to
Another

Note: To actually try out the next four steps, you must have printer connected to
your Computer. If not, just read through the example.

1. Store the Source Device Abbreviation in memory locations 16930-16931. For
example, to store DO (display) as the source device, execute the BASIC
Statements:

POKE 16930, ASC("D")
POKE 16931, ASC("0")

2. Store the Destination Device Abbreviation in memory locations 16928-16929. For
example, to store PR (printer) as the destination device, execute the BASIC
statements:

POKE 16928, ASC("P")
POKE 16929, ASC("R")

3. Setupa USR call to SROUTE (address 108). For example, execute the BASIC
statements;

POKE 16526, 108
POKE 16527,0

4. Make a USR call to $ROUTE with a dummy argument. For example, execute the
BASIC statements:

X = USR(0)

Upon completion of Step 4, the route is completed. Now everything you send to
the display will be sent to the printer instead.

9/2

OPERATION

Routing Multiple Devices

You can change two or more of the /O routes. To do this, you perform the routing
Steps 1 through 4 once for each change you wish to make. However, to get the
desired result, you must do the changes in the correct order! If you use one device
as the source of aroute, you should not later on use the same device asa
destination. Here’s why:

After you route device A to device B, device A is now logically equivalent to device
B. Therefore:

(1) RouteAtoB
(2) RouteCtoA

Does not allow C to output to device A. Output to C will actually transfer to B, just as
if you had executed these steps:

(1) RouteAtoB
(2) RouteCtoB

On the other hand:

(1) RouteCtoA
(2) RouteAtoB

Does allow device C to output to device A and device A to output to device B.

For example, suppose you want to route display output to the printer, and printer
output to the RS-232-C. Here’s a diagram of what you want to accomplish:

Display Printer

Output _ Output
RS-232-C /

Output

Display output goes to the Printer, and Printer output goes to the RS-232-C. All other
VO routes are unchanged. Note that Display output does not get carried forward
from the Printer to the RS-232-C. To accomplish the routing pictured above, use this
sequence:

1. Route DOtoPR
2. Route PRto RO

If you mistakenly do the steps in reverse order, you will get this result:

Display Printer
Output / Output
RS-232-C
Output

In this case, Display output is ‘‘carried forward’’ from the printer to the RS-232-C. It
does not output to the printer.

9/3

OPERATION

10/ Real-Time Clock

The Model Il contains a real-time clock. It is always running, except during
cassette and disk 170 and during certain other operations.

The clock keeps the following information in memory:

Abbrev. Range of Values Memory Location
MO Month 01-12 16924
DA Day 01-31 16923
YR Year 00 - 99 16922
HR Hour 00 - 23 16921
MN Min. 00 - 59 16920
SS Sec. 00 - 59 16919

The clock includes the lbgic for 28, 30 and 31-day months. It does not recognize leap
years.

When you start the Computer, the clock is set to all zeroes:

00/00/00 00:00:00

To Set the Clock

Simply store the appropriate data in the memory addresses given above. You may
do this by running the following program:

1@ DEFINT A-Z

2@ DIM TM(S)

30 Gl o= 16924

490 PRINT "INPUT & VALUES: MOs DAs YRs HRs MNs 88"
5@ INPUT TMO@)s TMOLYs TMOE)s TMO3)s TMO4)s TMOD)
4@ FOR I = @ TO 5

74 PORKE ClL. — Ts TM(I)
B NEXT 1

9% PRINT "CLOCK IS SET

108 END

101

TRS-80 MODEL il

To Read the Clock

The Model 11l includes a built-in BASIC function, TIMES, to get the time ina 17-byte
string. For example, execute the BASIC statement:

PRINT TIME$
To display the time.

To Display the Clock in Real-Time

You can turn on a continuously updated clock display. The current time (not the
date) will be displayed in columns 57 - 64, regardless of what mode the BASIC is in:
Immediate, Execute, Edit, or System. As long as the clock is running, it will be
updated on the display.

To enable the clock display, call the ROM subroutine $CLKON at address 664. To
disable it, call the ROM subroutine $CLKOFF at 673.

The following BASIC program shows how to turn the display on and off. Each time
you want to switch it on or off, run the program.

Note: To calculate the most significant and least significant bytes of a decimal
number, use this formula:

MSB = integer portion of (number/256)
LSB = number - (MSB * 256)

For example, decimal address 661 can be broken down this way:

MSB = integer portion of (661/256) = 2
LSB =661-(2*256)= 152

10/2

Sample Program

5 CLS

1@ DEFINT
20 EN =
3B PRINT
4@ PRINT "Dk
53 INPUT A%
&0 IF A% =
70 IF A% o=
ga GOTo 30
1w PORE
118 PORKE
1208 X =
1383 END

H-Z
150

L

DI = 1&1

"Ell
IIDII

THEN SW =
THEN SW

EN:
@ DT 4

16526,
16&BEFY 2
USRO@)

&5W

OPERATION

TLEE OF $CLKON/$CLRKOFF

NARLE CLOCK DISPLAY"
ISARLE CLOCK DISPLAY"

GOTO
GOTO

108
181

TSET UP USSR CALL
THMSE IS SAME FOR BOTH CAlLLS
P CALL USSR SUBROUTINE

For further information about the real-time clock, see $CLKON and $CLKOFF in the

Technical Information chapter.

10/3

OPERATION

11/ Input/Output Initialization

Whenever you start or reset the Computer, the input/output routines (‘1O drivers’’)
are initialized to their default values (as explained in the following chapters). For
example, the Video Display is initialized to have a blinking cursor.

As described in the previous chapters, there are ways for you to alter these default
characteristics via a BASIC or Z-80 program. Because of this feature, it is important
to have a means of resetting the 1/O drivers to their default conditions.

Model III has a ROM subroutine to re-initialize all I/O drivers to their default values.
We call it SINITIO.

The following BASIC program shows how to use $INITIO.

10 POKE 16526y 1050 LEE OF $INITIO ENTRY ADDRESS
2@ PORE 16527, @ P MER
@ X o= USR@) *CALL $INITIO

Run this program whenever you want to restore the 1/0 drivers to their initial
characteristics.

111

OPERATION [

12/Technical Information

This section is intended for Z-80 programmers and BASIC programmers who are
familiar with binary and hexadecimal arithmetic and hardware concepts like bit and
byte. Its purpose is to allow you to take full advantage of the Model I1I TRS-80.

If you want to understand and use the system on this level, but do not have the
background, we suggest you read:

TRS-80 Assembly Language Programming
by William Barden, Jr.
Radio Shack Catalog Number 62-2006

This one book will get you off to a good start. It was written for the Model I TRS-80,
but almost all of it applies to the Model Il as well.

To Protect High RAM

In many applications, you will want to interface a BASIC program and a Z-80
routine. In such cases, you need to protect enough high RAM to accommodate your
7-80 routine. Otherwise, BASIC will use all RAM available for storage and execution
of the BASIC program.

During the start-up dialog, you have the option of protecting high RAM via the
Memory Size Question. If you simply press (ENTER) to this question, BASIC will use
all available RAM.

To protect RAM, type in the *‘limit address’” in decimal form, and then press
ENTER). The limit address is the highest memory address you want BASIC to use.
Addresses above this value will not be affected by BASIC.

For example, if you type: "32667 ENTER)", BASIC will not use any memory above
32667. It will use 32667 and all lower-numbered memory locations.

1211

TRS-80 MODEL lIii

ROM Subroutines

The Model 111 BASIC ROM contains many subroutines that can be called by a Z-80
program; many of these can be called by a BASIC program via the USR function.
Each subroutine will be described in the format given below.

1. SNAME — Entry address

2. Function Summary

3. Description of function
4. Entry Conditions
5. Exit Conditions

6. Sample Program

Notes:

1. The subroutine name is only for convenient reference. It is not recognized by the
Computer. The $- prefix reminds you that it is a convenience name only.

The entry address is given in decimal/hexadecimal form. (The hexadecimal address
will be given in this form: X'0000".) This is the address you use in a Z-80 CALL. BASIC
programmers store this address in the USR definition address (16526-16527).

4, 5. Entry and exit conditions are given for z-80 programs. If a Z-80 register is not
mentioned here, then you can assume it is unchanged by the subroutine.

6. Sample Program fragments are given in Z-80 Assembly Language and, where
appropriate, in BASIC.

Here are the subroutines, arranged according to function. In the followin g pages,
they are arranged alphabetically.

e R

12/2

System Control
$CLKON Clock-display on
$CLKOFF Clock-display off
$DATE Get today’s date
$DELAY Delay for a specified interval
$INITIO Initialize all /O drivers
$READY Jump to Model Il *‘Ready’’
$RESET Reset Computer
$ROUTE Change I/0 device routing
$SETCAS Prompt user to set cassette baud rate
$TIME Get the time
Cassette I/O
$CSHIN Cassette on, search for leader and sync byte
$CSIN Inputa byte
$CSOFF Turn off cassette drive
$CSHWR Cassette on, Write leader and sync byte
$CSOUT Write a byte to cassette
Keyboard Input
$KBCHAR Get a character if available
$KBWAIT Wait for a character
$KBLINE Wait for a line
$KBBRK Check for (BREAK) key only
Printer Output
$PRCHAR Print a character
$PRSCN Print entire screen contents
RS-232-C1/O0
$RSINIT Initialization
$RSRCV Receive a character
$RSTX Send a character
Video Display Output
$VDCHAR Display a character
$VDCLS Clear the screen
$VDLINE Display a line

OPERATION

12/3

]
a4y
vesn
@5
%A
Qe
aRsy
A6
Bicy
@109

1A15
AA33
3B36
A7E8

BOOQ

TRS-80 MODEL I

anani
g s
Banns s
(Gl
A@EO0S 5

aunanésy 3

“ween7 TO DEMONSTRATE
QUOEE 3 FOINT. EACH DEMO ENDS
aInRy
QE@LE 3
W] o el . |
1Ak
DCHAR
RCHAR
KEL INE
KEWAT T @@
RERCY OEEGH
RE T % B
DS A
BGGH
DOEYH
@A CH
@1 CHH
@LnyH
G UIFEH
EGU
EQU
EQU
EdU
PER3Z CLKOFF
DAC34 SETCAS
DOGIS RE
BBOBE :
aau37 T 30.36H
BOB3E A7ERH
wm‘jq L s . s i s S i 26 i st o, s o o
BBE4E ORG HOUEH
DOO41

MODEL 111 ROM CALLS -

CREATED @7/07 /780
DATED B/ /768780

Up

DEMONSTRATION PROGRAM

WITH A

JUMP TO THE APPROFRIAT

JUME

Note: This z-80 assembly language listing is continued under the ROM call entries
for Sample Z-80 Programming.

12/4

ENTRY
o BasTo

PREADY?

OPERATION
TS R

$CLKOFF —673/X'02A1’
Disable the Clock Display
Entry Conditions

None

Exit Conditions

Ais altered. All other registers are unchanged.

Sample Z-80 Programming

Bevaz 5 TURN OFF CLOCK
[=dralvdd oAl [alrEOn CALL CLKOFF
803 G3191A Bov4s4 JP READY

Sample BASIC Programming

100 POKE 1465Z6:161F PORKE 146527.2 'LSB/MEB
112 X = USRW) P DUMMY ARGUMENT

$CLKON —664/X'0298’
Enable the Clock Display
Entry Conditions

None

Exit Conditions

Aisaltered. All other registers are unchanged.

Sample Z-80 Programming

20045 3 TURN ON CLOCK
8006 cD?802 20046 CAlLL CLKON
2one C3191A aa47 JP READY

Sample BASIC Programming

100 POKE 1652631521 PORKE 16327.2 ’L.8B/MEE
118 X = USR(@) *DUMMY ARGUMENT

12/5

TRS-80 MODEL Ili
R e R e

$CSHIN — 662/X'0296’
Search for Cassette Header and Sync Byte

Each cassette ‘‘record’” begins with a header consisting of a leader sequence and
synchronization byte. $CSHIN turns on the cassette drive and begins searching for
this header information. The subroutine returns to the calling program after the
sync-byte has been read.

Entry Conditions

None

Exit Conditions

Aisaltered. All other registers are unchanged.

Sample Z-80 Programming

The following program reads the tape created by the SCSHWR sample program.

bEB4AB 5 READ A MESSAGE FROM TAFE & STOF ON CAR-

sBoac ChCou1 Boa4y Cal.L VDCLS CLEAR

BO0F JEDD rllragat] LD As ADH

8e11 CD330B 20251 CAaLL VDCHAR GRIF & LINE

BO14 CD4E30 boas: CALL SETCAG LET z LECT BAUD RATE

=10 g 213880 20153 L.D HL ¥ M&G0 (HL) =CABSETTE PROMPT
Chipez D015 4 CALL VDL INE
CD4%00 lri]r Y] CALL REWAIT WAIT FOR ANY KEY
216280 Dvatis LD HLs TXT (HL) &6-BYTE BUFFER
CDY6DE 20as57 CALL CHHIN FIND START OF RECORD
3502 2058 LOOP CALL CSIN INFUT A BYTE
77 o059 LD (HL) » A STORE 1T
23 ralrfrat =] INC FHIL. POINT TO NXT LOC.
FE@D BoB61 CP @nH WAS LAST BYTE=CAR-RET*N?
2@F7 ralrlr oy IR NZsLOOP IF NOs GET NXT BYTE
CDFB01 20063 CALL CHOFF IF YESs TURN OFF CASSETTE
216280 2OBLL L.D HLs TXT DISPLAY THE MESSAGE
Chipg: 2065 call. VDL INE
C3191A rallri 1YY JP READY AND QUIT
50 PRBL7 MSGO DEFM "PREPARE TAPE TO PLLAY AND PRESS ANY KEY?
2D [raflrraye] DEFE @DH

BRBLe? TXT DEFS 256 STORAGE FOR TAPED MESSAGEE

12/6

OPERATION

$CSIN — 565/X'0235'
Input a Byte

After completion of $CSHIN, use $CSIN to begin inputting data, one byte at a time.

Note: You must call $CSIN often enough to keep up with the baud rate (either 500 or
1500 baud).

Entry Conditions

None

Exit Conditions

A =Databyte

Sample Z-80 Programming

See $CSHIN.

$CSHWR —647/X'0287’
Write Leader and Sync Byte

Each cassette * ‘record’’ begins with a header consisting of a leader sequence and a
synchronization byte. SCSHWR turns on the cassette and writes out this header.

Entry Conditions

None

Exit Conditions

Ais altered.

12/7

Sample Z-80 Programming

8162
8165
8167
B16A
H16D
6170
B173
B175
B178
8174
817¢
£ 7F
8183
8185
g1ag
£188
818E
8191
819z
819X
8196
8198
8194
§H19D
a1am
g1pz
B1B3
81E9
B1EA

CHCY@L
JE@D
CD33060
21AG81
CD1IR@:
F1EAB]
B&HFF
CD400@
JHER
3E@D
CD3300
CD4Z30

218381
Chiedz
CD4OR
C

=3
Ch&4as
FEBD
2QF7
CDFB@1
C3191A
54

@D

4D

oD

2ua7a 5 INPUT
Bee71

@aeu7e LOOP1
baa73

ralrlr g

Bor7s

aoo74
Den77
Bvoa7a
aua7Y
radrluislv]

Bras1

[ralralraf=ied
BRGe3
radulrsydy

20085
noB8s
ralnliits g
Beess LOOPZ:
BoBsYy
rlrlragdn]

BoB91

[ralrlri s
B093
2094

BBe95 MS5GL
[ralri
BRBY7 MSG:E
ralrlrgsd
ORI TXT1

TRS-80 MODEL Il

A KEYBOARD MESSAGE AND WRITE IT TO CASSETTE

CALL
LD
CALL
LD
CALL
LD
LD
CALL.
JR
LD
CALL
CALL.
LD
CAL.L
CALL
CALL
LD
LD
INC
CALL.
CcP
JR
CaAlL.L
JFP
DEFM
DEFE
DEFM
DEFE
DEFS

For a program to read the tape in, see $CSHIN.

$CSOFF — 504/X'01F8’
Turn Off Cassette

vHICLS
Ay ADH CARRIAGE RETURN
VDCHAR SKIP TO NEXT DISPLAY LINE
HL s M&EGT PROMPT MESSSAGE
VDL INE DISPLAY IT
256~BYTE BUFFER

55 MAX OF 2535 CHARACTERS
KEBL INE GET A LINE FROM KB
CrLLOOPL LOOP IF <BREAK: WAS PRESSED
As ODH)
VDCHAR SKIP A LINE
SETCAS LET USER SELECT BAUD RATE
HL.» MG CABSETTE PROMPT
VDL INE
KBWAIY WAIT UNTIL A REY IS PRESSED
CBHWR WRITE CASSETTE HEADER
HLs TXT1 (HL) =MESSAGE
Ay (HL) A=AGCIT BYTE
HI. POINT TO NEXT BYTE .
CSOUT WRITE LAST BYTE TO TAPE
@ADH WAS IT A CARRIAGE RETURN?
NZsLOOPZ IF NOs THEN GET NEXT BYTE
CBOFF IF YESsy TURN OFF CASBETTE
READY
TTYPE IN A MESSSAGE”
@DH
'MESSSAGE STORED. PRESS ANY KEY WHEN READY TO RECORD...’
@DH END OF LINE
286

After writing data to cassette, call this subroutine to turn off the cassette drive.

Entry Conditions

None

Exit Conditions

None

Sample Z-80 Programming

See SCSHWR.

12/8

OPERATION
)

$CSOUT —612/X'0264'
Output a Byte to Cassette

After writing the header with $CSHWR, use $CSOUT to write the data, one byte at a
time.

Note: You must call $CSOUT often enough to keep up with the baud rate (either 500
or 1500 baud).

Entry Conditions
A =Databyte.

Exit Conditions

None

Sample Z-80 Programming

See $CSHWR.

$DATE — 12339/X'3033’
Get Today’s Date

Entry Conditions
(HL) = Eight-byte output buffer

Exit Conditions

(HL) =Date in this format:
MO/DA/YR

All other registers are altered.

Sample Z-80 Programming
o102 3 GET TODAY’S DATE & TIME

8ZEA 210883 20101 LD HLs TXT2 8-BYTE BUFFER
E2ED CD3332 po1oz CALL DATE

82F@ Z1FF82 20103 LD HLs TXT3 8-RBYTE BUFFER
B2F3 CD3630 D104 CALL TIME

82F6 21FF82 20135 LD HLs TXT3 (HL)=TIME/DATE MS5G.
8EF9 ChipBZ: 22106 CALL VDL INE DISPLAY TIME/DATE
82FC C3191A oni1e7 JP READY

82FF 22108 TXT3 DEFS 8 TIME GOES HERE
83a7 20 2109 DEFE 20H ASCII SPACE

8308 RB110 TXTZ DEFS 8 DATE GOES HERE
8310 2D @111 DEFE @DH END OF LINE

12/9

TRS-80 MODEL lii

$DELAY — 96/X'0060’
Delay for a Specified Interval

This is a general-purpose routine to be used whenever you want to pause before
continuing with a program.

Entry Conditions

BC =Delay multiplier. Actual delay will be:
2.46 + (14.8 * BC) microseconds
When BC = 0000, 65536 is used. This is the
maximum delay (about one second).

Exit Conditions

BC and A are altered.

Sample Z-80 Programming

WALl FSHOW ALL DISPLAY CHARACTERS: WITH DELAY AFTER EACH

JEZD @BA11L3 CENTER EQU SEZOH ROW @y COLUMN 3% OF VIDEO
8311 CDh&00 BR114 CALL INITIO RESTORE ALL 1/0 DRIVERS
8314 <,l)< @1 B@1LLs CaLl VDCLS FIRGT CLEAR SCREEN
€317 ! Y LD A OH
83319 @ao117 L.D BCy 7FFFH SET 1/2-8EC DELAY FACTOR
8310 @118 LOOP3 LD (CENTER) s A WRITE CHARACTER TO VIDEO
HB31F 3 PUSH AF SAVE LAST CHAR. CODE
8320 CE5 PUSH BC AND DELAY FACTOR

CD&BBO CAL.L DEL.AY

C1 FOP BC

F1 POP AF

acC INC A NEXT CHAR CODE

2OF3 JR NZs1.00P3 IF NOT ZEROs DISPLAY IT

C3191A JP READY ELSE END

$SINITIO — 105/X'0069’
Initialize Al /0O Drivers

Call $SINITIO to restore all /O drivers to their initial default conditions, including /0
routes.

Entry Conditions

None

Exit Conditions

Allregisters are altered.

12/10

OPERATION
e R R

Sample Z-80 Programming

See $SDELAY.

Sample BASIC Programming

1@ PORE 16526:105: POKE 1&6527.0 *LSB/MSE
2B X = UBRG) DUMMY ARGUMENT
$KBCHAR —43/X'002B’

Get a Keyboard Character if Available

This subroutine checks the keyboard for a character. The character (if any) is not
displayed.

Entry Conditions

None

Exit Conditions
A=ASClI Character. IF A=0, no character was available.

DEis altered.

Sample Z-80 Programming

See $RSINIT.

12/11

TRS-80 MODEL il
]

$KBLINE — 64/X'0040’
Wait for a Line from the Keyboard

This routine gets a full line from the Keyboard. The line is terminated by a carriage
return (X'0D") or (BREAK) (x'01"). Characters typed are echoed to the display.

Entry Conditions

B

I

Maximum length of line. When this many characters are typed,
no more will be allowed except for (ENTER) or (BREAK

Storage buffer. Length shouldbe B + 1.

Il

(HL)

Exit Conditions
C Status = (BREAK) was the terminator.

B Number of characters entered.

I

|

(HL) = Line from keyboard, followed by terminating character.

DEis altered.

Sample Z-80 Programming

See SCSHWR.

$KBWAIT —73/X'0049’

Wait for a Keyboard Character

This routine scans the keyboard until akey is pressed. If (BREAK) is pressed, it will
be returned in A like any other key. The character typed is not echoed to the
Display.

Entry Conditions

None

12/12

OPERATION

Exit Conditions

A = Keyboard character

DE is altered.

Sample Z-80 Programming

See $CSHWR.

$KBBRK — 653/X'028D’

Check for (BREAK) Key Only

This is a fast key scan for the (BREAK) key only. Use it when you want to minimize
keyboard scan time without totally locking out the keyboard.

Entry Conditions

None

Exit Conditions
Nz Status = (BREAK) was pressed

Ais altered.

12/13

TRS-80 MODEL Ili

$PRCHAR —59/X'003B’

Output a Character to the Printer

$PRCHAR waits until the Printer is available or until (BREAK) is pressed. If (BREAK) is
pressed, SPRCHAR returns to caller.

Entry Conditions

A = ASCII character

Exit Conditions

DE is altered.

Sample Z-80 Programming

20148 3 PRINTER DEMO

8356 216583 BO149 LD HLs TXT4 (HL) =SAMPLE TEXT

8359 7E 20150 LOOPS LD As (HL) GET CHAR. INTO A

8354 3 20151 INC HL. POINT TO NEXT CHAR

8356 CD3E00 o015z CALL PRCHAR PRINT CHAR IN A

ggz; 5353 3@153 CP @DH WAS IT & CARRIAGE RETURN?
360 Z0F7 D154 JR NZ s LOOPS IF NOs GET NEXT CHAR.
gjgg C31914A 0155 Jp READY IF YES: GUIT

K 54 20156 TXT4 DEFM "THIS SENTENCE WILL PE INTED?

8382 @D oB157 DEFB @DH L BE PRINTED

43D P0158 END

Q0RY ASSEMRPLY ERRORS

$PRSCN —473/X'01D9’

Print Entire Screen Contents

This routine copies all 1024 characters from the screen to the printer. If the printer is
unavailable, it waits until the printer becomes available. If (BREAK) is pressed,
$PRSCN returns to the caller.

Entry Conditions

None

Exit Conditions

Allregisters are altered.

12/14

OPERATION

$READY —6681/X'1A19’

Jump to Model II1 BASIC “‘Ready’’

To exit from a machine-language program into BASIC’s immediate mode, jump to
$READY (don’t call it).

Entry Conditions

None

Exit Conditions

None

Sample Z-80 Programming

See $SCSHIN.

$RESET — 0/X'0000’

Jump to RESET

Jump to this address to re-initialize the entire system starting at the *‘Cass?”’
prompt. If a disk controller is present, the Computer will attempt to load TRSDOS.
To prevent this from happening, the operator must hold down before this
jump is executed.

Entry Conditions

None

Exit Conditions

None

12/15

TRS-80 MODEL il

$ROUTE —108/X'006C’
Change I/0 Device Routing

Entry Conditions
(X'4222') = Two-byte source device ASCII abbreviation: {KI,DO,RI,RO,PR}

(X'4220") = Two-byte destination device ASCII abbreviation. Same set as above.

Exit Conditions

DE is altered.

Sample Programming.

See Chapter 9 in this section.

12/16

O

$RSINIT — 90/X'005A’
Initialize the RS-232-C Interface

OPERATION

When you start the Computer, the R$-232-C interface is initialized to the

following characteristics:

Send/Receive Baud Rate: 300
Word length: 8

Parity: None

Stop-Bits: One

Wait for completion of character /O

To change any of these, you must call SRSINIT.

Entry Conditions

(16888) = Send/Receive Baud Rate Code:
Most significant four bits = send rate
Least significant four bits = receive rate

See the table of baud rate codes in Chapter 8.

(16890) = Wait/Don’t Wait Switch
Zero = “‘Don’t Wait™’
Non-Zero = ‘“Wait”’

(16889) = RS-232-C Characteristics Switch:

Bits Meaning Bits

7 Parity: 3
1 =Even
0=0dd

6,5 Word Length: 2
00 = 5 Bits
01 = 6 Bits
10 = 7 Bits
11 = 8Bits

5 Stop Bits:
0=1Bit
1 = 2Bits

4 Parity On/Off
0 = Parity
1 = No Parity

Meaning

Transmit On/Off
0 = Disable
1 = Enable

Data Terminal Ready
0=No
1= Yes

Request To Send
0=No
1= Yes

1217

TRS-80 MODEL il

Exit Conditions

DE is altered.

Sample Z-80 Program
D127
a8
pa1z9
0130

a83:2C AF o131

832D BEFALL Qa13:

8350 CD5ADG QB133

333 Chevial D134

8336 CDRa BA135

8339 FE D136

SA3R 2806 @137

833D CD3300 20138

8340 CDS500 23139

8343 F1EB41 20140

E344 CD500 20141

8349 7E QD142

8344 FEQQ 0143

834C 28E8 PB144

834E CD3300 20145

8351 18BE3 PB146

8453 C31i91A Q0147

"
2
"
3
M
1
-
7

REYIN

RSIN

$RSRCV —80/X’'0050’

Receive a Character from the RS-232-C Interface

XOR
.D
CALL
CALL
CAL.L
CP
JR
CALL
CALL
LD
CALL.
LD
CP
JR
CALL
JR
JP

TERMINAL PROGRAM FOR DEMO OF RS-

A

(16890) s A

REINIT
VDCLS

RE.CHAR

?

Z»RSIN
VDCHAR
RETX
HL.» 16872
RSRCV
As (HL)
@
Z:REYIN
VDCHAR
KEYIN
READY

--C CALLSs $KBCHAR AND $VDCHAR

ASBUME 146888 & 16889 CONTAIN THE PROPER INITIALIZATION VALUES

ZERO A TO SELECT "DON'T WAIT"

CHECK KEYBROARD

IF NOTHINGs CHECK RSZ3Z
SELF-ECHO

SEND IT TO RSZ3Z
(HL)=CHAR. INPUT BUFFER
CHECK FOR RSZ3Z INPUT
GET BUFFER CONTENTS

IF NOTHINGs CHECK KR
ELSE DISPLAY IT
CHECK KB

RETURN TO RASIC

If RS-232-C Wait is enabled, this routine waits for a character to be received, or until

BREAK) is pressed.

If Wait is not enabled, it returns whether or not a character is received.

Entry Conditions

None

Exit Conditions

(16872) = Character received. Zero indicates no character.

DEis altered.

Sample Z-80 Programming

See $RSINIT.

12/18

OPERATION
A L e S eI

$RSTX — 85/X'0055'
Transmit a Character to the RS-232-C Interface

If RS-232-C Wait is enabled, this routine waits until the character is transmitted or

until (BREAK) is pressed.

If Wait is not enabled, it returns whether or not a character is transmitted.

Entry Conditions

A = Character

Exit Conditions

7 Status = No character sent

DEis altered.

Sample Z-80 Programming
See $RSINIT.

$SETCAS —12354/X'3042’

Prompt User to Set Cassette Baud Rate

This call repeats the first question in the Model III start-up dialog. It displays the
prompt:

Cass?

on the next line of the display, and waits for the operator to type "H" (high—1500
baud) or "L” (low—3500) or (ENTER) (default to high).

Upon return from the call, the cassette rate is set accordingly.

Entry Conditions

None

Exit Conditions
All registers are altered.
Sample Z-80 Programming

See SCSHWR.
T L) B T S e s e L L

12/19

TRS-80 MODEL il

$TIME — 12342/X'3036’
Get the Time

Entry Conditions
(HL) = Eight-byte output buffer

Exit Conditions

(HL) = Time in this format:
HR:MN:SS

All other registers are altered.

Sample Z-80 Programming

See $DATE.

$VDCHAR —51/X'0033’
Display a Character

This subroutine displays a character at the current cursor location.

Entry Conditions

A = ASCII character

Exit Conditions

DEis altered.

Sample Z-80 Programming

See $DELAY.

12/20

e]

OPERATION
B S R

$VDCLS —457/X'01C9’
Clear the Video Display Screen

Entry Conditions

None

Exit Conditions

All registers are altered.

Sample Z-80 Program
See $CSHWR.

$VDLINE — 539/X'021B’
Display a Line

This subroutine displays a line. The line must be terminated with an ASCIIETX
(X'03") or carriage return (X'0D’). If the terminator is a carriage return, it will be
printed; if it is an ETX, it will not be printed. This allows VDLINE to position the
cursor to the beginning of the next line or leave it at the position after the last text
character.

Entry Conditions

(HL) = Output text, terminated by X'03’ or X'0D’.

Exit Conditions
(HL) = First character after the terminator.

DEis altered.

Sample Z-80 Programming
See $CSHWR.

12/21

TRS-80 MODEL il
T R 0

BREAK) Processing

The (BREAK) key is intercepted during keyboard scan operations. The Computer
transfers control to a three-byte jump vector in RAM (hex values: C3 1sb msb). For

special applications, you may change the jump vector addresses to allow your own
program to handle the (BREAK) key.

The keyscan (BREAK) jump vector is located at 16396 (X'400C").

Register contents on entry to the jump vector
DE = Modified by the Computer

(SP) = The return address of the interrupted program. That is, a RET will transfer
control to the point at which the program was interrupted.

Sample BASIC Programming
Run this BASIC program to disable ~ (BREAK).

10 PORE 143965175 175 = 7-8@ “"XOR A" CODE
2@ PORKE 16397201 TABY = 280 "RETY CODE

Run this BASIC program to enable the (BREAK) key .

18 POKE 16396y 201 *Z-8@ "RET" CODE

12/22

OPERATION

Memory Map
Decimal Contents Hexadecimal
Address Address
0 12 K ROM 0
Model Il BASIC
12288 2 K ROM 3000
for System Use
14336 Keyboard 3800
Matrix
15360 Memory-Mapped 3C00
Video Display:
Upper left corner =
15360 + O.
Lower right corner =
15360 + 1023.
16384 Reserved 4000
for System Use
17129 User Memory 42E9
For Program and Data
32767 “16K RAM” ends here. 7FFF
49151 “82K RAM” ends here. BFFF
65535 “48K RAM” ends here. FFFF

12/23

TRS-80 MODEL I
R ———

Summary of Important ROM Addresses

Address

Dec Hex Contents Function

0 0000 $RESET System reset

43 002B $KBCHAR Check for keyboard character

51 0033 $VDCHAR Display a character

59 003B $PRCHAR Printa character

64 0040 $SKBLINE Wait for a keyboard line

73 0049 SKBWAIT Wait for a keyboard character

80 0050 $RSRCV Receive character from RS-232-C

85 0055 $RSTX Transmit character to RS-232-C

90 005A $RSINIT Initialize RS-232-C

96 0060 $DELAY Delay for a specified time

105 0069 SINITIO Initialize all /O drivers

108 006C $ROUTE Route /O

457 01C9 $VDCLS Clearthe screen

473 01D9 $PRSCN Print screen contents

504 01F8 $CSOFF Turn off cassette

539 021B $VDLINE Display aline

565 0235 $CSIN Input a cassette byte

612 0264 $CSOUT Output a cassette byte

647 0287 $SCSHWR Write the cassette header

653 028D $KBBRK Check for (BREAK) key only

662 0296 $CSHIN Read the cassette header

664 0298 $CLKON Turn on the clock display

673 02A1 $CLKOFF Turn off the clock display

6681 1A19 $READY Jump to BASIC “Ready”

12339 3033 $DATE Getthe date

12342 3036 $TIME Getthetime

12354 3042 $SETCAS Set cassette baud rate

14312 37E8 $PRSTAT Printer status
(Read Only)
“Go” only if:
Bit7=0 “NOTBUSY"
Bit6 =0 “NOTOUT OF PAPER”
Bit5=1 “DEVICE SELECT"
Bitd=1 “NOTPRINTERFAULT”
Bits 3,2,1 and 0 are not used.

12/24

OPERATION

Summary of Important RAM Addresses

Address

Dec

Hex

Contents

Initial
Contents

16396

16409

16412

16416

16419

16424

16425

16427

16872

16880

16888

16889

16890

16913

400C

4019

401C

4020

4023

4028

4029

402B

41E8

41F0

41F8

41F9

41FA

4211

BREAK) Jump Vector
Keyboard scan operations
Three bytes

Caps Lock Switch
0 = “Upper and Lower Case”
Not 0 = “Caps Only”

Cursor Blink Switch
0 = “Blink”
Non-Zero = “No-Blink”

Cursor Address
Two bytes: LSB, MSB

Cursor Character
ASCII Code 32— 255

Maximum Lines/Page
plusone

Number of lines printed
plusone

Line Printer Max. Line
length less two.
255 = “No Maximum”

$RSRCV input Buffer
One byte

$RSTX Output Buffer
One byte

$RSINIT Baud Rate Code
TX Code = Most Sig. Nibble
RCV Code = Least Sig. Nibble

$RSINIT Parity/Word Length/
Stop-Bit Code

$RSINIT WAIT Switch
0 = “Don’'t Wait”
Non-Zero = “Wait”

Cassette Baud Rate Switch
0 = 500 Baud
Non-Zero = 1500 Baud

C9 xx xx

“Caps”

“Blink”

N/A

176

67

“No Max”

85

108

“Wait”

N/A

12/25

TRS-80 MODEL lii
e T R

Address Initial
Dec Hex Contents Contents
16916 4214 Video Display Scroll Protect 0
FromQto 7. Greater values
areinterpretedin modulo 8

16919 4217 Time-Date 00:00:00
Six binary bytes: 00/00/00
SSMMHHYY DD MM

16928 4220 $ROUTE Destination Device N/A
Two-byte I/O designator

16930 4222 $ROUTE Source Device N/A

Two-byte I/O designator

12/26

OPERATION

13/ Troubleshooting And
Maintenance

If you have problems operating your TRS-80, please check the following table of
symptoms and cures. It’s also possible that you have not followed the instructions

correctly.

If you can’t solve the problem, take the unit in to your local Radio Shack. We’ll
have it fixed and returned to you ASAP!

Symptom Possible Cause. Cure.
The Cass? message does not appear 1. No Ac power. Check power cord
when you turn on the Computer. connection to Computer and all

peripherals.

2. Incorrect power-up sequence.

3. Peripheral device (e.g., printer) is
not connected properly. Recheck
connection.

4. Disk system. To operate without a
TRSDOS diskette, hold down (BREAK)
while you reset or power on.

5. Video Display needs adjustment.
Check Brightness and Contrast
controls.

13/1

TRS-80 MODEL lil

Symptom

Possible Cause. Cure.

Can’t get a cassette program to
load.

1. Improper cassette connection.
Check connection instructions in
cassette owner’s manual.

2. Cassette load speed does not match
the speed of the recorded tape. Model
Level I BASIC programs are always
Low (500 baud). Model III programs
may be either High (1500) or Low.

3. Incorrect volume setting. Try
another volume setting.

4. Information on tape may have been
garbled due to static electricity
discharge, magnetic field, or tape
deterioration. Try to load duplicate
copy, if available.

Computer ‘‘hangs up’’ during
normal operation, requiring reset
or power-off/on

1. Fluctuations in the AC power
supply. See AC Power Sources, below.

2. Defective or improperly installed
connector. Check all connection
cables to see that they are securely
attached and that they are not frayed or
broken.

3. Programming. Re-check the
program.

13/2

OPERATION
Lo e e

AC Power Sources

Computers are sensitive to fluctuations in the power supply at the wall socket. This
is rarely a problem unless you are operating in the vicinity of heavy electrical
machinery. The power source may also be unstable if some appliance or office
machine in the vicinity has a defective switch which arcs when turned on or off.

Your Model III TRS-80 is equipped with a specially designed, built-in AC line filter.
It should eliminate the effects of ordinary power-line fluctuations.

However, if the fluctuations are severe, you may need to take some or all of the
following steps:

@ Install bypass orisolation devices in the problem-causing devices

@ Fix or replace any defective (arcing) switches

@ Install a separate power-line for the Computer

@ Install a special line filter designed for computers and other sensitive electronic
equipment

Power line problems are rare and many times can be prevented by proper choice of
installation location. The more complex the system and the more serious the
application, the more consideration you should give to providing an ideal power
source for your Computer.

Maintenance

Your Computer requires little maintenance. It’s a good idea to keep it clean and free
of dust build-up. This is especially important for the keyboard. Radio Shack sells a
custom-designed Model I1I dust cover you may find helpful.

If you need to clean the Computer case, use a damp, lint-free cloth.

The peripheral devices (cassette recorder, line printer, etc.) may require more
maintenance. Check the owner’s manual for each peripheral in your system.

13/3

&

OPERATION

14/ Specifications

AC Power Supply

This applies to non-disk systems only. For disk systems, see the Disk System

Owner’s Manual.

Power Requirements 105- 130 VAC, 60 Hz
(240 VAC, 50 Hz Australian)
(220 VAC, 50 Hz European)

Current Drain 0.83 Amps RMS

Microprocessor

Type k Z-80

Clock Rate 2.02752MHz

RS-232-C Interface
Standard .
RS-232-C Signal Pin #
PG Protective Ground 1
TD Transmit Data 2
RD Receive Data 3
RTS Request To Send 4
CTS Clear To Send 5
DSR Data Set Ready 6
SG Signal Ground 7
CD Carrier Detect 8
DTR Data Terminal Ready 20
RI Ring Indicator 22
STD* Secondary Transmit Data 14
SUN* Secondary Unassigned 18
SRTS* Secondary Request To Send 19

*Note: These signals are not used for the secondary functions, but are reserved for

future use.

1411

TRS-80 MODEL lii

RS-232-C Pin Location

Looking from the outside at the RS-232-C jack on the Model I1I Computer:

T2 3 4 5 6 7 B 9 1011 12 13
?4(5?5?‘717;1’92‘0&:’2;‘:&15]

Parallel Printer Interface

Signal Function Pin#

STROBE* 1.5 S pulse to clock the data from 1

processor to printer

DATAO Bit O (Isb) of output data byte 3

DATA1 Bit 1 of output data byte 5

DATA2 Bit 2 of output data byte 7

DATA3 Bit 3 of output data byte 9

DATA4 Bit 4 of output data byte 11

DATAS5 Bit 5 of output data byte 13

DATA®G Bit 6 of output data byte 15

DATA7 Bit 7 (msb) of output data byte 17

BUSY Input to Computer from Printer, high 21

indicates busy
PAPER Input to Computer from Printer, high 23
EMPTY indicates no paper—if Printer doesn’t

provide this, signal is forced low

SELECT Input to Computer from Printer, high 25

indicates device selected

FAULT* Input to Computer from Printer, low 28

indicates fault (paper empty, light
detect, deselect, etc.)

GROUND Common signal ground 2,4,6,8,10
12,14,16,18,
20,22,24,27,
31,33,34

NC Not connected or not used 26,29,30,32

*These signals are active-low.

Lo e s e e e]

14/2

Printer Pin Location

OPERATION

Looking from the bottom rear at the printer card-edge connector as in Figure | on 2/2:

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

m - e W BN o | o TN s N o fom | e S s SN e SN e B s SO o DU o B o §
, J | - J —T 7 T j - | - =F L= J | J =T L= J o § | -

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Cassette Interface

Suggested Input Level for Playback
from Recorder

Typical Computer Output Level to
Recorder

Remote On/Off Switching
Capability

Cassette Jack Pin Location

1to 5 Volts peak-to-peak at a
minimum impedance of 220 Ohms

800 mV peak-to-peak at 1 K Ohm

0.5 A maximumat 6 VDC

Looking at the outside of the cassette jack on the Computer:

2

Remote Control

Signal Ground

Remote Control

Input from Recorder’s Earphone Jack
Output to Recorder’s Aux or Mic Jack

I e

14/3

- 1/BASIC Concepts

This chapter gives an in-depth description of how to use the full power of Model 111
BASIC. Programmers require this information in order to build powerful and
efficient programs. However, if you are still somewhat of a novice, you might want
to skip this chapter for now, keeping in mind that the information is here when you
need it.

This chapter is divided into four sections:

1. Overview — Elements of a Program. This section defines many of the terms
we will be using in the chapter.

2. How BASIC Handles Data. Here we discuss how BASIC classifies and stores
data. This will show you how to get BASIC to store your data in its most efficient
format.

3. How BASIC Manipulates Data. This will give you an overview of all the
different operators and functions you can use to manipulate and test your data.

4. How to Construct an Expression. Understanding this topic will help you form
powerful statements instead of using many short ones.

1/1

TRS-80 MODEL lii
O R R SR e

Overview — Elements of a
Program

This overview defines the elements of a program:
The program itself, which consists of . . .
Statements, which may consist of . . .
Expressions
We will refer to these terms during the rest of this chapter.

Program

A program is made up of one or more numbered lines. Each line contains one or
more BASIC statements. BASIC allows line numbers from 0 to 65529 inclusive. You
may include up to 255* characters per line, including the line number. You may
also have two or more statements to a line, separated by colons.

*You can only type in 240 characters for new lines; using the Edit Mode, you can
add the extra 15 characters.

Here is a sample program:

Line BASIC Colon between

BASIC statement
n)t:mber S/ jtateym statements /
P I

100 CLS:" PRINT “NORMAL MODE...”

110 PRINT “ABCDEFGHIJKLMNOPQRSTUVWXYZ”

120 FOR 1=1TO1000: NEXT |

130 CLS: PRINT CHR$(23); “DOUBLE-SIZE MODE..."
140 PRINT “ABCDEFGHIJKLMNOPQRSTUVWXYZ”

150 END

When BASIC executes a program, it handles the statements one at a time, starting at
the first and proceeding to the last. Some statements, such as GOTO, ON . . . GOTO,
GOSUB, change this sequence.

12

Statements

A statement is a complete instruction to BASIC, telling the Computer to perform
specific operations. For example:

GOTO 100

Tells the Computer to perform the operations of (1) locating line 100 and (2)
executing the statement on that line.

END
Tells the Computer to perform the operation of ending execution of the program.

Many statements instruct the computer to perform operations with data. For
example, in the statement:

PRINT “SEPTEMBER REPORT"

the data is SEPTEMBER REPORT. The statement instructs the Computer to print the
data inside the quotes.

Expressions

Anexpression is actually a general term for data. There are four types of
expressions:

1. Numeric expressions, which are composed of numeric data. Examples:

(1 +5.2)/3
D

5.B

3.7682

ABS(X) + RND(0)
SIN(@3 + E)

2. String expressions, which are composed of character data. Examples:

A%

“STRING”

“STRING” + “DATA"

MO$ + “DATA”

MID$(A$,2,5) + MID$("MAN",1,2)
M$ + A$ + B$

1/3

TRS-80 MODEL IIi

3. Relational expressions, which test the relationship between two expressions.
Examples:

A=1
A% > B$

4. Logical expressions, which test the logical relationship between two
expressions. Examples:

A$ = “YES” AND B$ = “NO”
C>5 OR M<B OR 0>2
578 AND 452

Functions

Functions are automatic subroutines. Most BASIC functions perform computations
ondata. Some serve a special purpose such as controlling the video display or
providing data on the status of the computer. You may use functions in the same
manner that you use any data— as part of a statement.

These are some of BASIC’s functions:

INT
ABS
STRING$

How Basic Handles Data

Model Il BASIC offers several different methods of handling your data. Using these
methods properly can greatly improve the efficiency of your program. In this
section we will discuss:

1. Ways of Representing Data
a. Constants
b. Variables
2. How BASIC Stores Data
a. Numeric (integer, single precision, double precision)
b. String
3. How BASIC Classifies Constants
4. How BASIC Classifies Variables
5. How BASIC Converts Data

1/4

Ways of Representing Data

BASIC recognizes data in two forms — either directly, as constants, or by reference
to a memory location, as variables.

Constants

All data is input into a program as ‘ ‘constants’” — values which are not subject to
change. For example, the statement:
PRINT *“1PLUS1EQUALS”; 2

contains one string constant,
1 PLUS 1 EQUALS

and one numeric constant
2

In these examples, the constants ‘‘input’’ to the PRINT statement. They tell PRINT
what data to print on the Display.

These are more examples of constants:

3.14159 “L.0O.SMITH"
1.775E+3 “0123456789ABCDEF"
“NAME TITLE" -~123.45E-8
57 “AGE”

Variables

A variable is a place in memory — a sort of box or pigeonhole — where data is
stored. Unlike a constant, a variable’s value can change. This allows you to write
programs dealing with changing quantities. For example, in the statement:

A$ = “OCCUPATION”

The variable A$ now contains the data OCCUPATION. However, if this statement
appeared later in the program:

A$ = “FINANCE"

The variable A$ would no longer contain OCCUPATION. It would now contain the
data FINANCE.

1/5

TRS-80 MODEL Il

Variable Names

InBASIC, variables are represented by names. Variable names must begin with a
letter, A through Z. This letter may be followed by one more character — either a
digit or a letter.

For example
AM A A1 B1 AB
are all valid and distinct variable names.

Variable names may be longer than two characters. However, only the first two
characters are significant in BASIC.

For example:
SUM SU SUPERNUMERARY

are all treated as the same variable by BASIC.

Reserved Words

Certain combinations of letters are reserved as BASIC keywords, and cannot be used
in variable names. For example:

OR LAND LENGTH MIFFED

cannot be used as variable names, because they contain the reserved of
OR, AND, LEN, andIF, respectively.

See the Appendix for alist of reserved words.

Simple and Subscripted Variables

All of the variables mentioned above are simple variables. They can only refer to
one data item.

Variables may also be subscripted so that an entire list of data can be stored under
one variable name. This method of data storage is called an array. For example, an
array named A may contain these elements (subscripted variables):

A(0) A1) A(2) A(3) A(4)

1/6

You may use each of these elements to store a separate data item, such as:

A(0) = 5.3
A(l) =72
A@2) =83
A@3) = 6.8
A(4) = 3.7

In this example, array A is a one-dimensional array, since each element contains
only one subscript. An array may also be two-dimensional, with each element
containing two subscripts. For example, a two-dimensional array named X could
contain these elements:

X(0,0) = 8.6 X(0,1) = 3.5
X(1,0) = 7.3 X(1,1) = 32.6

With BASIC, you may have as many dimensions in your array as you would like.
Here is an example of a three-dimensional array named L which contains these 8
elements:

L(0,0,0) = 35233 L(0,1,0) = 96522
L(0,0,1) = 52000 L(0,1,1) = 10255
L(1,0,0) = 33333 L(1,1,0) = 96253
L(1,0,1) = 53853 L(1,1,1) = 79654

BASIC assumes that all arrays contain 11 elements in each dimension. If you want
more elements you must use the DIM statement at the beginning of your program to
dimension the array.

For example, to dimension array L, put this line at the beginning of the program:
DIML(1,1,1)

to allow room for two elements in the first dimension; two in the second; and two in
the third foratotal of 2 + 2 %« 2 = 8 elements.

See the Arrays chapter later on in this manual.

1/7

TRS-80 MODEL Il

How BASIC Stores Data

The way that BASIC stores data determines the amount of memory it will consume
and the speed in which BASIC can process it.

Numeric Data

Y ou may get BASIC to store all numbers in your program as either integer, single
precision, or double precision. In deciding how to get BASIC to store your numeric
data, remember the tradeoffs. Integers are the most efficient and the least precise.
Double precision is the most precise and least efficient.

Integers
(Speed and Efficiency, Limited Range)

To be stored as an integer, a number must be whole and in the range of — 32768 to
32767. Aninteger value requires only two bytes of memory for storage. Arithmetic
operations are faster when both operands are integers.

For example:
1 32000 -2 500 —12345

can all be stored as integers.

Single-Precision Type
(General Purpose, Full Numeric Range)

Single-precision numbers can include up to 7 significant digits, and can represent
normalized values* with exponents up to =38, i.e., numbers in
the range:

[-1x10%%,-1x10%¥][1 x 108, 1 x 10%]
A single-precision value requires 4 bytes of memory for storage. BASIC assumes a
number is single-precision if you do not specify the level of precision.

*In this reference manual, normalized value is one in which exactly one digit
appears to the left of the decimal point. For example, 12.3 expressed in normalized
formis 1.23 x 10.

1/8

For example:

10.001 -200034 1.774E6 6.024E-23 123.4567

can all be stored as single-precision values.

Note: When used in a decimal number, the symbol E stands for *‘single-precision
times 10 to the power of...”” Therefore 6.024E-23 represents the single-precision
value:

6.024x 10

Double-Precision Type
(Maximum Precision, Slowest in Computations)

Double-precision numbers can include up to 17 significant digits, and can represent
values in the same range as that for single-precision numbers. A double-precision
value requires 8 bytes of memory for storage. Arithmetic operations involving at
least one double-precision number are slower than the same operations when all
operands are single-precision or integer.

For example:

1010234578
-8.7777651010
3.1415926535897932
8.00100708D12

can all be stored as double-precision values.

Note: When used in a decimal number, the symbol D stands for *‘double-precision
times 10 to the power of...”” Therefore 8.00100708 D12 represents the value
8.00100708 x 10*2

1/9

ono0 MODEL 1l

String Data

Strings (sequences of characters) are useful for storing non-numeric information
such as names, addresses, text, etc. You may store any ASCII characters as a string.
(A list of ASCII characters is in the Appendix).

For example, the data constant:
Jack Brown, Age 38

can be stored as a string of 18 characters. Each character (and blank) in the string is
stored as an ASCII code, requiring one byte of storage. BASIC would store the above
string constant internally as:

A string can be up to 255 characters long. Strings with length zero are called ‘null’’
or “‘empty’’.

How BASIC Classifies Constants

When BASIC encounters a data constant in a statement, it must determine the type of
the constant: string, integer, single precision, or double precision. First, we will list
the rules BASIC uses to classify the constant. Then we will show you how you can
override these rules, if you want a constant stored differently:

Rule 1
If the value is enclosed in double-quotes, it is a string. For example:

“YES”
“3331 Waverly Way”
1234567890"

the values in quotes are automatically classified as strings.
Rule 2

If the value is not in quotes, it is a number. (An exception to this rule is during data
input by an operator, and in DATA lists. See INPUT, INKEYS, and DATA)

1/10

For example:

123001
1
~7.3214E+6

are all numeric data.
Rule 3
Whole numbers in the range of — 32768 to 32767 are integers. For example:

12350
-12
10012

are integer constants.
Rule 4

If the number is not an integer and contains seven or fewer digits, it is
single-precision. For example:

1234567
-1.23
1.3321

are all single-precision.
Rule 5

If the number contains more than seven digits, it is double precision. For example,
these numbers:

1234567890123456
—1000000000000.1
2.777000321

are all double precision.

1/11

TRS-80 MODEL I

Type Declaration Tags

You can override BASIC’s normal typing criteria by adding the following ‘‘tags’’ to
the end of the numeric constant:

! Makes the number single-precision. For example, in the statement:
A=12.345678901234!

the constant is classified as single-precision, and shortened to seven digits:
12.34567

E Single-precision exponential format. The E indicates the constant is to be
multipled by a specified power of 10. For example:

A=1.2E5

stores the single-precision number 120000 in A.

Makes the number double-precision. For example, in statement:
PRINT 3#/7
the first constant is classified as double-precision before the division takes
place.
D Double-precision exponential format. The D indicates the constant is to be

multipled by a specified power of 10. For example:
A=1.23456789D — 1
The double-precision constant has the value 0.123456789.

How BASIC Classifies Variables

When BASIC encounters a variable name in the program, it classifies it as either a
string, integer, single- or double-precision number.

BASIC classifies all variable names as single-precision initially. For example:
AB AMOUNT XY L

are all single-precision initially. If this is the first line of your program:
LP =12

BASIC will classify LP as a single-precision variable.

112

BASIC

However, you may assign different attributes to variables by using definition
statements at the beginning of your program:

DEFINT — Defines variables as integer

DEFDBL — Defines variables as double-precision

DEFSTR — Defines variables as string

DEFSNG — Defines variables as single-precision. (Since BASIC classifies all
variables as single-precision initially anyway, you would only need to use
DEFSNG if one of the other DEF statements were used.

For example:
DEFSTR L

makes BASIC classify all variables which start with L as string variables. After this
statement, the variables:

L LP LAST

can all hold string values only.

Type Declaration Tags

As with constants, you can always override the type of a variable name by adding a
type declaration tag at the end. There are four type declaration tags for variables:

% Integer

! Single-precision

Double-precisionn
$ String

For example:
1% FT% NUM% COUNTER%

are all integer variables, regardless of what attributes have been assigned to the
letters1, F,Nand C.

T! RY! QUAN! PERCENT!

are all single-precision variables, regardless of what attributes have been assigned
to the letters T,R, Qand P. :

X# RR# PREV# LSTNUM#

are all double-precision variables, regardless of what attributes have been assigned
tothe letters X, R, Pand L.

1/13

TRS-80 MODEL I

Qs CA$ WRD$ ENTRY$

are all string variables, regardless of what attributes have been assigned to the
letters Q, C, W and E.

Note that any given variable name can represent four different variables. For
example:

AS# A5! A5% A5%
are all valid and distinct variable names.

One further implication of type declaration: Any variable name used without a
tag is equivalent to the same variable name used with one of the four tags. For
example, after the statement:

DEFSTR C

the variable referenced by the name C1 is identical to the variable referenced by the
name C1$.

How BASIC Converts Numeric Data

Often your program might ask BASIC to assign one type of constant to a different
type of variable. For example:

A% = 2.34

In this example, BASIC must first convert the single precision constant 2.34 to an
integer in order to assign it to the integer variable A%.

You might also want to convert one type of variable to a different type, such as:

A# = A%
Al = A#
Al = A%

The conversion procedures are listed on the following pages.

114

D e

Single- or double-precision to integer type

BASIC returns the largest integer that is not greater than the original value.

Note: The original value must be greater than or equal to -32768, and less
than 32768.

Examples
A%=—-10.5
Assigns A% the value -11.
A% =32767.9
Assigns A% the value 32767.
A%=2.5D3
Assigns A% the value 2500.
A% = —123.45678901234578
Assigns A% the value -124.
A% = —32768.1

Produces an Overflow Error (out of integer range).

Integer to single- or double-precision

No error is introduced. The converted value looks like the original value with zeros
to the right of the decimal place.

Examples

A# =32767

Stores 32767.000000000000 in A#.
Al=—-1234

Stores -1234.000in A!.

1/15

TRS-80 MODEL il

A O R R

Double- to single-precision

This involves converting a number with up to 17 significant digits into a number
with no more than seven. BASIC chops off (truncates) the least significant digits to
produce a seven-digit number. Before Printing such a number, BASIC rounds it off
(4/5 rounding) to six digits.

Examples
Al=1.234567890124567

Stores 1.234567 in A! However, the statement:
PRINT A!

will display the value 1.23457, because only six digits are displayed. The full seven
digits are stored in memory.

Al=1.3333333333333333

Stores 1.333333in A!.

Single- to double-precision

To make this conversion, BASIC simply adds trailing zeros to the single-precision
number. If the original value has an exact binary representation in single-precision
format, no error will be introduced. For example:

A#=15
Stores 1.5000000000000 in A#, since 1.5 does have an exact binary representation.

However, for numbers which have no exact binary representation, an error is
introduced when zeros are added. For example:

A#=13
Stores 1.299999952316284 in A#.

Because most fractional numbers do not have an exact binary representation, you
should keep such conversions out of your programs. For example, whenever you
assign a constant value to a double-precision variable, you can force the constant to
be double-precision:

A#=1.3# A#=1.3D
Both store 1.3in A#.

Here is a special technique for converting single-precision to double-precision,
without introducing an error into the double-precision value. It is useful when the
single-precision value is stored in a variable.

“

1/16

Take the single-precision variable, convert it to a string with STRS, then convert the
resultant string back into a number with VAL. That is, use:

VAL (STR$ (single-precision variable))
For example, the following program:

10 Al=13
20 A#=Al
30 PRINTA#

prints a value of:
1.299999952316284
Compare with this program:

10A!=1.3
20 A# = VAL (STR$(A!)
30 PRINT A#

which prints a value of:
1.3

The conversion in line 20 causes the value in A! to be stored accurately in
double-precision variable A#.

Illegal Conversions

BASIC cannot automatically convert numeric values to string, or vice versa. For
example, the statements:

A% = 1234
A% = “1234”

are illegal. (Use STR$ and VAL to accomplish such conversions.)

117

TRS-80 MODEL il
R e e e

How BASIC Manipulates Data

You have many fast methods you may use to get BASIC to count, sort, test and
rearrange your data. These methods fall into two categories:

1. Operators
a. numeric
b. string
c¢. relational
d. logical

2. Functions

Operators

Anoperator is the single symbol or word which signifies some action to be taken on
either one or two specified values referred to as operands.

In general, an operator is used like this:

operand-1 operator operand-2
operand-1 and -2 can be expressions. A few operations take only one operand,
and are used like this:

operator operand

Examples:
6+ 2

The addition operator + connects or relates its two operands, 6 and 2, to produce
the result 8.

-5
The negation operator — acts on a single operand 5 to produce the result negative 5.

Neither 6 + 2 or —5 can stand alone; they must be used in statements to be
meaningful to BASIC. For example:

A=6+2
PRINT -5

1/18

Operators fall into four categories:
® Numeric

® String

® Relational

@ [ogical

based on the kinds of operands they require and the results they produce.

Numeric Operators

Numeric Operators are used in numeric expressions. Their operands must always
be numeric, and the result they produce is one numeric data item.

In the descriptions below, we use the terms integer, single-precision, and
double-precision operations. Integer operations involve two-byte operands,
single-precision operations involve four-byte operands, and double-precision
operations involve eight-byte operands. The more bytes involved, the slower the
operation.

There are five different numeric operators. Two of them, sign + and sign — , are
unary, that is, they have only one operand. A sign operator has no effect on the
precision of its operand.

For example, in the statement:
PRINT —77, +77

the sign operators — and + produce the values negative 77 and positive 77,
respectively.

Note: When no sign operator appears in front of a numeric term, + is assumed.

The other numeric operators are all binary, that is, they all take two operands.

These operators are:

+ Addition

- Subtraction

* Multiplication

/ Division
[or D Exponentiation. Press the (D) key to type in this operator.

1/19

TRS-80 MODEL Il
O

Addition

The + operator is the symbol for addition. The addition is done with the precision
of the more precise operand (the less precise operand is converted).

Forexample, when one operand is integer type and the other is single-precision, the
integer is converted to single-precision and four-byte addition is done. When one
operand is single-precision and the other is double-precision, the single-precision
number is converted to double-precision and eight-byte addition is done.

Examples:

PRINT 2+3
Integer addition.

PRINT 3.1+3

Single-precision addition.

PRINT 1.2345678901234567 + 1
Double-precision addition.

Subtraction

The — operator is the symbol for subtraction. As with addition, the operation is
done with the precision of the more precise operand (the less precise operand is
converted).

Examples:
PRINT 33 — 11
Integer subtraction.

PRINT 33 - 11.1
Single-precision subtraction.

PRINT 12.345678901234567 — 11
Double-precision subtraction.

1/20

Multiplication

The * operator is the symbol for multiplication. Once again, the operation is done
with the precision of the more precise operand (the less precise operand is
converted).

Examples:

PRINT 3311
Integer multiplication.

PRINT 33*11.1
Single-precision multiplication.

PRINT 12.345678901234567 * 11
Double-precision multiplication.

Division

The / symbol is used to indicate ordinary division. Both operands are converted to

single or double-precision, depending on their original precision:

® Ifeither operand is double-precision, then both are converted to
double-precision and eight-byte division is performed.

® If neither operand is double-precision, then both are converted to
single-precision and four-byte division is performed.

Examples:
PRINT 3/4

Single-precision division.

PRINT 3.8/4
Single-Precision division.

PRINT 3/1.2345678901234567
Double-precision division.

1/21

TRS-80 MODEL Il

Exponentiation

The symbol [denotes exponentiation. It converts both its operands to
single-precision, and returns a single-precision result.

Note: To enter the [operator, press (4.

For example:
PRINT6[.3

prints 6 to the .3 power.

String Operator

BASIC has a string operator (+) which allows you to concatenate (link) two
strings into one. This operator should be used as part of a string expression. The
operands are both strings and the resulting value is one piece of string data.

The + operator links the string on the right of the sign to the string on the
left. For example:

PRINT “CATS” + “LOVE” + “MICE”
prints:
CATSLOVEMICE

Since BASIC does not allow one string to be longer than 255 characters, you will
getan error if your resulting string is too long.

Relational Operators

Relational operators compare two numerical or two string expressions to form a
relational expression. This expression reports whether the comparison you set up
in your program is true or false. It will return a — 1 if the relation is true; a 0 if it

is false.

1/22

Numeric Relations

This is the meaning of the operators when you use them to compare numeric

expressions:
< Less than
> Greaterthan
= Equalto
<> or >< Notequal to
=< or <= Lessthan orequalto
=>0r >= Greaterthan orequal to

Examples of true relational expressions:

1<2
2<>5
2<=5
2<=2
5>2
7=7

String Relations

The relational operators for string expressions are the same as above, although their
meanings are slightly different. Instead of comparing numerical magnitudes, the
operators compare their ASCII sequence. This allows you to sort string data:

< Precedes
> Follows
= Has the same precedence
>< or <> Does not have the same precedence
<= Precedes or has the same precedence
> = Follows or has the same precedence

BASIC compares the string expressions on a character-by-character basis. When
it finds a non-matching character, it checks to see which character has the lower
ASCII code. The character with the lower ASCII code is the smaller (precedent) of
the two strings.

Note: The appendix contains a listing of ASCII codes for each character.

Examples of true relational expressions:
llA!) < AKBH

The ASCII code for A is decimal 65; for B it’s 66.
“CODE” < “COoL”

1/23

TRS-80 MODEL Il

The AscCII code for O is 79; for D it’s 68.

If while making the comparison, BASIC reaches the end of one string before
finding non-matching characters, the shorter string is the precedent. For
example:

“TRAIL” < “TRAILER”

Leading and trailing blanks are significant. For example:
AT < AT

ASCII for the space characteris 32; for A, it’s 65.
“Z—80" < “Z—80A”

The string on the left is four characters long; the string on the right is five.

How to Use Relational Expressions

Normally, relational expressions are used as the test in an IF/THEN statement. For
example:
IF A=1 THEN PRINT “CORRECT”

BASIC teststoseeif Aisequalto 1. Ifitis, BASIC prints the message.
IF A$ < B$ THEN 50

If string A$ alphabetically precedes string BS, then the program branches to line
50.

IF R$ ="“YES” THEN PRINT A$
If R$ equals YES then the message stored as A$ is printed.

However, you may also use relational expressions simply to return the true or
false results of a test. For example:

PRINT 7=7
Prints — 1 since the relation tested is true.
PRINT llA)) > ltB!!

Prints 0 because the relation tested is false.

1/24

Logical Operators

Logical operators make logical comparisons. Normally, they are used in IF’/THEN
statements to make a logical test between two or more relations. For example:

IFA =1 OR C=2 THEN PRINT X
The logical operator, OR, compares the two relations A=1and C=2.

Logical operators may also be used to make bit-comparisons of two numeric
expressions.

For this application, BASIC does a bit-by-bit comparison of the two operands,
according to predefined rules for the specific operator.

Note: The operands are converted to integer type, stored internally as 16-bit,
two’s complement numbers. To understand the results of bit-by-bit
comparisons, you need to keep this in mind.

The following table summarizes the action of Boolean operators in bit

manipulation.
Meaning of First Second
Operator | Operation Operand | Operand | Result
AND When both bits are 1, the 1 | 1
result will be 1. Otherwise,| 1 0 0
the result will be 0. 0 1 0
0 0 0
OR Result will be 1 unless both| 1 1 1
bits are 0. 1 0 1
0 1 1
0 0 0
NOT Result is opposite of bit. 1 0
0 |

1/25

TRS-BOMODELN

Hierarchy of Operators

When your expressions have multiple operators, BASIC performs the operations
according to a well-defined hierarchy, so that results are always predictable.

Parentheses

When a complex expression includes parentheses, BASIC always evaluates the
expressions inside the parentheses before evaluating the rest of the expression.
For example, the expression:

8-(3-2)
is evaluated like this:

3-2=1
8-1=7

With nested parentheses, BASIC starts evaluating the innermost level first and
works outward. For example:

4*(2- (3~ 4))
is evaluated like this;

3-4=—1
2-(-1)=3
4*3 =12

Order of Operations

When evaluating a sequence of operations on the same level of parenthesis,
BASIC uses a hierarchy to determine what operation to do first.

The two listings below show the hierarchy BASIC uses. Operators are shown in
decreasing order of precedence. Operators listed in the same entry in the table
have the same precedence and are executed as encountered from left to right:

Numerical operations:

[or (Exponentiation)
+, — (Unary sign operands [not addition and subtraction])
Y
+, — (Addition and subtraction)
<>, = <= > <>
NOT
AND

OR

1/26

String operations:

+
<, >, =,<=,>=,<>

For example, in the line:
X*X + 5[2.8

BASIC will find the value of 5 to the 2.8 power. Next, it will multiply X * X, and
finally add this value to the value of 5 to the 2.8. If you want BASIC to perform the
indicated operations in a different order, you must add parentheses. For
example:

X*(X + 5[2.8)
or
X*(X + 5)[2.8
Here’s another example:
IF X=0 OR Y>0 AND Z=1 THEN 255

The relational operators = and > have the highest precedence, so BASIC
performs them first, one after the next, from left to right. Then the logical
operations are performed. AND has a higher precedence than OR, so BASIC
performs the AND operation before OR.

If the above line looks confusing because you can’t remember which operator is
precedent over which, then you can use parentheses to make the sequence
obvious:

IF X=0 OR ((Y>0) AND (Z=1) THEN 255

1/27

TRS-80 MODEL il

Functions

A function is a built-in sequence of operations which BASIC will perform on data.
A function is actually a subroutine which usually returns a data item. BASIC
functions save you from having to write a BASIC routine, and they operate faster
than a BASIC routine would.

A function consists of a keyword which is usually followed by the data that you
specify. This data is always enclosed in parentheses; if more than one data item is
required, the items are separated by commas.

If the data required is termed *‘number’’ you may insert any numerical expression.
Ifitis termed ‘‘string”’ you may insert a string expression.

Examples:
SQR(A + 6)

Tells BASIC to compute the square root of (A + 6).
MID$ (A3, 3,2)

Tells BASIC to return a substring of the string A$, starting with the third character,
with alength of 2.

Functions cannot stand alone in a BASIC program. Instead they are used in the
same way you use expressions — as the data in a statement.

For example
A =SQR(7)
Assigns A the data returned as the square root of 7.
PRINT MID$ (A$,3,2)
Prints the substring of A$ starting at the third character and two characters long.

If the function returns numeric data, it is a numeric function and may be used in a
numeric expression. If it returns string data, it is a string function and may be
used in a string expression.

1/28

How to Construct an Expression

Understanding how to construct an expression will help you put to gether
powerful statements — instead of using many short ones. In this section we will
discuss the two kinds of expressions you may construct:

e Simple
e Complex

as well as how to construct a function.

As we have stated before, an expression is actually data. This is because once
BASIC performs all the operations, it returns one data item. An expression may be
string or numeric. It may be composed of:

@ Constants
@ Variables
® Operators
® Functions

Expressions may be either simple or complex:

A simple expression consists of a single term: a constant, variable or function.
If it is a numeric term, it may be preceded by an optional + or - sign.

For example:
+A 33 -5 SQR(8)

are all simple numeric expressions, since they only consist of one numeric term.
A$ STRING$ (20,A$) “WORD” “M”

are all simple string expressions since they only consist of one string term.

Here’s how a simple expressi/o\n is formed:

_,.@T CONSTANT
- | variaBLE
> FUNCTION |

A complex expression consists of two or more terms (simple expressions)
combined by operators. For example:

A—1 X+32-Y 1=1 AANDB ABS(B)+LOG(2)

are all examples of complex numeric expressions. (Notice that you can use the
relational expression (1 = 1) and the logical expression (5 AND 3) as a complex
numeric expression since both actually return numeric data.)

A% +B$ “Z"+Z% STRINGS$(10, “A”) + “M”

are all examples of complex string expressions.

1/29

TRS-80 MODEL I

R R A

This is how a complex numeric expression is formed:

zlelo

SIMPLE .
EXPRESSION o

This is how a complex string expression is formed:

- SIMPLE EXPRESSION

Most functions, except functions returning system information, require that you
input either or both of the following kinds of data:

® One or more numeric expressions
@ One or more string expressions.

This is how a function is formed:

()
N

™1 KEYWORD 'w EXPRESSION >®—Ar’

If the data returned is a number, the function may be used as a term in a numeric
expression. If the data is a string, the function may be used as a term in a string
expression.

1/30

2/Commands

Whenever a prompt > is displayed, your Computer is in the *‘Immediate’” or
“Command’’ Mode. You can type in a command, it, and the Computer will
respond immediately. This chapter describes the commands you'’ ll use to control
the Computer — to change modes, begin input and output procedures, alter
program memory, etc. All of these commands — except CONT — may also be used
inside your program as statements. In some cases this is useful; other times it is
just for very specialized applications.

The commands described in this chapter are:

AUTO CONT EDIT RUN
CLEAR CSAVE LIST SYSTEM
CLOAD DELETE LLIST TROFF
CLOAD? NEW TRON

AUTO line number, increment

Turns on an automatic line numbering function for convenient entry of programs —
all you have to do is enter the actual program statements. You can specify a
beginning line number and an increment to be used between line numbers. Oryou
can simply type AUTO and press (ENTER), in which case line numbering will begin at
10 and use increments of 10. Each time you press (ENTER), the Computer will
advance to the next line number.

Examples: to use line numbers
AUTO 10,20,30.. . .
AUTOS5,5 5.10.15.. . .

AUTO 100 100, 110, 120.. . .
AUTO 100, 25 100, 125, 150.. . .
AUTO,10 0.10,20.. . .

To turn off the AUTO function, press the key. (Note: When AUTO brings up
a line number which is already being used, an asterisk will appear beside the line
number. If you do not wish to re-program the line, press the key to turn off
AUTO function.)

21

TRS-80 MODEL I

CLEAR~R

When used without an argument (e.g., type CLEAR and press (ENTER)), this
command resets all numeric variables to zero, and all string variables to null. When
used with an argument (e.g., CLEAR 100), this command performs a second
function in addition to the one just described: it makes the specified number of bytes
available for string storage.

Example: CLEAR 100 makes 100 bytes available for strings. When you turn on the
Computer a CLEAR 50 is executed automatically.

CLOAD ‘‘file name’”’

Lets you load a BASIC program stored on cassette. Place recorder/player in Play
mode (be sure the proper connections are made and cassette tape has been re-wound
to proper position). The file name may be any single character except the
double-quote ().

Note: See **Using the Cassette Interface”” in the Operation Section for instructions
on which baud rate to use.

Entering CLOAD will turn on the cassette machine and load the first program
encountered. BASIC also lets you specify a desired *file’” in your CLOAD
command. For example, CLOAD “A” will cause the Computer to ignore programs
on the cassette until it comes to one labeled ““A’’. So no matter where file ““A’’ is
located on the tape, you can start at the beginning of the tape; file ‘A’ will be
picked out of all the files on the tape and loaded. As the Computer is searching for
file ““A’’, the names of the files encountered will appear in the upper right corner of
the Display, along with a blinking “***’.

Only the first character of the file name is used by the Computer for CLOAD,
CLOAD?, and CSAVE operations.

Loading a program from tape automatically clears out the previously stored
program. See also CSAVE.

2/2

CLOAD? “‘file name’’

Lets you compare a program stored on cassette with one presently in the Computer.
This is useful when you have saved a program onto tape (using CSAVE) and you
wish to check that the transfer was successful. You may specify CLOAD?
““file-name’’ . If you don’t specify a file-name, the first program encountered will
be tested. During CLOAD?, the program on tape and the program in memory are
compared byte for byte. If there are any discrepancies (indicating a bad dump). the
message “BAD” will be displayed. In this case, you should CSAVE the program
again. (CLOAD?, unlike CLOAD, does not erase the program memory..)

Be sure to type the question mark or the Computer will interpret your command as
CLOAD.

CONT

When program execution has been stopped (by the key or by a STOP
statement in the program), type CONT and to continue execution at the point
where the stop or break occurred. During such a break or stop in execution, you
may examine variable values (using PRINT) or change these values. Then type CONT
and and execution will continue with the current variable values. CONT,
when used with STOP and the BREAK) key, is primarily a debugging tool.

NOTE: You cannot use CONT after EDITing your program lines or otherwise
changing your program. CONT is also invalid after execution has ended normally.
See also STOP.

CSAVE ‘‘file name’’

Stores the resident program on cassette tape. (Cassette recorder must be properly
connected, cassette loaded, and in the Record mode, before you enter the CSAVE
command.) You must specify a file-name with this command. This file-name may
be any alpha-numeric character other than double-quote (*’). The program stored
on tape will then bear the specified file-name, so that it can be located by a CLOAD
command which asks for that particular file-name. You should always write the
appropriate file-names on the cassette case for later reference.

Examples:
CSAVE “1” saves resident program and attaches label “‘1”’
CSAVE"A” saves resident program and attaches label ‘A’

See also CLOAD. and *‘Using the Cassette Interface’’ in the Operation Section.

R R B e e e e R

2/3

TRS-80 MODEL Il
e O e e B A

DELETE line number-line number

Erases program lines from memory. You may specify an individual line or a
sequence of lines, as follows:

DELETE line number Erases one line as specified

DELETE line number-line number Erases all program lines starting
with first line number specified
and ending with last number
specified

DELETE-line number Erases all program lines up to
and including the specified
number

The upper line number to be deleted must be a currently used number.

Examples:

DELETES Erases line 5 from memory (error if line 5
not used)

DELETE11-18 Eraseslines 11, 18 and every line in between

If you have just entered or edited a line, you may delete that line simply by entering
DELETE. (use a period instead of the line number).

EDIT line number

Puts the Computer in the Edit Mode so you can modify your resident program. The
longer and more complex your programs are, the more important EDIT will be. The
Edit Mode has its own selection of subcommands, and we have devoted Chapter 9
to the subject.

LIST line number-line number

Instructs the Computer to display all programs lines presently stored in memory. If
youenter LIST without an argument, the entire program will scroll continuously up
the screen. To stop the automatic scrolling, press and @ simultaneously.
This will freeze the display. Press any key to release the *‘pause’” and continue the
automatic scrolling.

2/4

To examine one line at a time, specify the desired line number as an argument in the
LIST command. To examine a certain sequence of program lines, specify the first
and last lines you wish to examine.

Examples:

LIST50 Displays line 50

LIST 50-150 Displays line 50, 150 and everything in between

LIST50 - Displays line 50 and all higher-numbered lines

LIST. Displays current line (line just entered or edited)

LIST —-50 Displays all lines up to and including line 50

LLIST

Works like LIST, but outputs to the Printer

LLIST Lists current program to printer.

LLIST 100 - Lists line 100 to the end of the program to the
line printer.

LLIST 100-200 Lists line 100 through 200 to the line printer.

LLIST. Lists current line to the line printer.

LLIST —-100 Lists all lines up to and including line 100 to the line
printer.

See LIST.

NEW

Erases all program lines, sets numeric variables to zero and string variables to null.
It does not change the string space allocated by a previous CLEAR number
statement.

NEW is used in the following program to provide password protection.

1@ INPUT A$: IF A% <x "E" THEN 65520
20 REM

3@ REM REST OF PROGRAM HERE
46 REM

65519 END

65320 NEW

You can’t run the rest of the program until you enter the correct password, in this
caseanE.

2/5

- TRS-80 MODEL il

RUN line number

Causes Computer to execute the program stored in memory. If no line number is
specified, execution begins with lowest numbered program line. If a line number is
specified, execution begins with the line number. (Error occurs if you specify an
unused line number.) Whenever RUN is executed, Computer also executes a

CLEAR.

Examples:

RUN Execution begins at lowest-numbered line
RUN 100 Execution begins at line 100

RUN may be used inside a program as a statement; it is a convenient way of starting
over with a clean slate for continuous-loop programs such as games.

To execute a program without CLEARIng variables, use GOTO.

SYSTEM

Puts the Computer in the System Mode, which allows you to load object files
(machine-language routines or data). Radio Shack offers several
machine-language software packages, such as the Editor-Assembler. You can also
create your own object files using the TRS-80 Editor/Assembler.

Toload an object file: Type SYSTEM and (ENTER

*?

will be displayed. Now enter the file name (no quotes are necessary) and the tape
will begin loading. During the tape load, the familiar asterisks will flash in the
upper right-hand corner of the Video Display. When loading is complete, another

*?

will be displayed. Type in a slash-symbol / followed by the address (in decimal
form) at which you wish execution to begin. Or you may simply type in the
slash-symbol and without any address. In this case execution will begin at
the address specified by the object file.

NOTE: BASIC object files are stored as blocks. Further, each block has its own
check sum. Should a check sum error occur while loading, the leftmost asterisk will
change into the letter C. If this occurs you will have to reload the entire object file.
(If the tape motion doesn’t stop, hold down until READY returns.)

See ‘‘Using the Cassette Interface’” in the Operation Section for information on
which baud rate to use and the procedures for loading a system tape.

2/6

TROFF

Turns off the Trace function. See TRON.

TRON

Turns on a Trace function that lets you follow program-flow for debugging and
execution analysis. Each time the program advances to a new program line, that
line number will be displayed inside a pair of brackets.

For example, enter the following program:

1@ PRINT "LINE 1@"

2@ INPUT "PRESS <ENTER: TO BEGIN THE LOOP"3 X
3@ FPRINT "HERE WE GO..."

4@ GOTO 3@

Now type in TRON (ENTER), and RUN (ENTER).

S1@FLLINE 1@
CEBFPRESS CENTER:> TO BEGIN THE LOOFP7

LRAFHERE WE GO ..

4@ ARFHERE WE GO. ..

4@ C3OFHERE WE GO. ..

etc.

(Press (SHIFT) and @ simultaneously to pause execution and freeze display. Press

any key to continue with execution.)
As you can see from the display, the program is in an infinite loop.

The numbers show you exactly what is going on. (To stop execution, press

BREAK).)

To turn off the Trace function, enter TROFF. TRON and TROFF may be used inside
programs to help you tell when a given line is executed.

For Example

5@ TRON
HEA A = A 4+]
7@ TROFF

might be helpful in pointing out every time line 60 is executed (assuming execution
doesn’t jump directly to 60 and bypass 50). Each time these three lines are
executed, <60> <70> will be displayed. Without TRON, you wouldn’t know
whether the program was actually executing line 60. After a program is debugged,
TRON and TROFF lines can be removed.

2/7

3/Input-Output

The statements described in this chapter let you send data from Keyboard to
Computer, Computer to Display, and back and forth between Computer and the
Cassette and the Line Printer (if you have one). These will primarily be used inside
programs to input data and output results and messages.

Statements covered in this chapter:

PRINT
INPUT
(@ (PRINT modifier) DATA
TAB ((PRINT modifier) READ
USING (PRINT formatter) RESTORE
LPRINT
PRINT #-1(Output to Cassette)
INPUT # - 1(Input to Cassette)
PRINT item list

Prints anitem or a list of items on the Display. The items may be either string
constants (messages enclosed in quotes), string variables, numeric constants
(numbers), variables, or expressions involving all of the preceding items. The
items to be PRINTed may be separated by commas or semi-colons. If commas are
used, the cursor automatically advances to the next print zone before printing the
next item. If semi-colons are used, no space is inserted between the items printed on
the Display. In cases where no ambiguity would result, all punctuation can be
omitted.

Examples:

A X = 5
4@ PRINT 255 "18 EQUAL TO"s X 4 2
5 END

B0 A% = "ETRING"
S0 PRINT A% A% A% " "5 A%
1@ END

138 X = 25
14@ PRINT 23 "I5 EQUAL TO" X
156G END

i6@ A = 5 B = 1@: C = 3
19@ PRINT aRC
0@ END

31

TRS-80 MODEL il

Postive numbers are printed with a leading blank (instead of a plus sign); all
numbers are printed with a trailing blank; and no blanks are inserted before or after
strings (you can insert them with quotes as in line 90).

In line 140 no punctuation is needed; but in line 190 zero will print out because ABC
is interpreted as a single variable which has not been assigned a value yet.

£330 PRINT "ZONE 1"s"ZONE Z"s"ZONE 3" "ZONE 4"s"ZONE 1 ETC"

240 END

There are four 16-character print zones per line.

270 PRINT "ZONE 1"s4"ZONE 3¢
=8@ END

The cursor moves to the next print zone each time a comma is encountered.

300 PRINT "PRINT STATEMENT #1@"3
310 PRINT "PRINT STATEMENT #z0"
320 END

A trailing semi-colon overrides the cursor-return so that the next PRINT begins
where the last one left off (see line 300).

If no trailing punctuation is used with PRINT, the cursor drops down to the beginning
of the next line.

PRINT @ position, item list

Specifies exactly where printing is to begin. The @ modifier must be a number
from O to 1023. Refer to the Video Display worksheet, Appendix C, for the exact
position of each location 0-1023:

100 PRINT @ 550, “LOCATION 550"
RUN this to find out where location 550 is.

100 PRINT @ 550, 550; @ 650, 650

3/2

Whenever you PRINT @ on the bottom line of the Display, there is an automatic
line-feed, causing everything displayed to move up one line. To suppress this, use a
trailing semi-colon at the end of the statement.

Example:

100 PRINT @ 1000, 1000;
110GOTO 110

Use a trailing semi-colon or comma any time you want to suppress the line feed.

PRINT TAB (expression)

Moves the cursor to the specified position on the current line (modulo * 128 if you
specify TAB positions greater than 127). TAB may be used several times in a PRINT
list.

The value of expression must be between 0 and 255 inclusive.
Example:

10 PRINT TAB (5) “TABBED 5”; TAB(25) “TABBED 25~

No punctuation is required after a TAB modifier.

B340 PFROM PRINT TOR(EXPRESSION)

250 X = 3

369 PRINT TABR(X) X3 TAB(X ¢+ 2) X 4 235 TAR(X 4 3) X 4 3
370 END

Numerical expressions may be used to specify a TAB position. This makes TAB very
useful for graphs of mathematical functions, tables, etc. TAB cannot be used to
move the cursor to the left. If cursor is beyond the specified position, the TAB is
ignored.

*Modulo A cyclic counting system. Modulo 64 means the count goes from zero to
63 and then starts over at zero.

3/3

TRS-80 MODEL lil

PRINT USING string, item list

This statement allows you to specify a format for printing string and numeric
values. It can be used in many applications such as printing report headings,
accounting reports, checks, or wherever a specific print format is required.

The PRINT USING statement uses the following format:
PRINT USING string ; value

String and value may be expressed as variables or constants. This statement will
print the expression contained in the string, inserting the numeric value shown to
the right of the semicolon as specified by the field specifiers.

The following field specifiers may be used in the string:

This sign specifies the position of each digit located in the
numeric value. The number of # signs you use establishes the
numeric field. If the numeric field is greater than the number
of digits in the numeric value, then the unused field positions
to the left of the number will be displayed as spaces and
those to the right of the decimal point will be displayed as
Zeros.

The decimal point can be placed anywhere in the numeric
field established by the # sign. Rounding-off will take place
when digits to the right of the decimal point are suppressed.

) The comma— when placed in any position between the first
digit and the decimal point — will display a comma to the left
of every third digit as required. The comma establishes an
additional position in the field.

> Two asterisks placed at the beginning of the field will cause all
unused positions to the left of the decimal to be filled with
asterisks. The two asterisks will establish two more positions

in the field.

$ A dollar-sign will be printed ahead of the number.

$$ Two dollar signs placed at the beginning of the field will act
as a floating dollar sign. That is, it will occupy the first position
preceding the number.

**$ If these three signs are used at the beginning of the field, then

the vacant positions to the left of the number will be filled by
the * sign and the $ sign will again position itself in the first
position preceding the number.

@@ ® ® @ Causesthe number tobe printed in exponential (E or D) format.
or[[[[This will be dlSplayed asa‘‘[”.

3/4

BASIC

+ Whena + signis placed at the beginning or end of the field, it
will be printed as specified asa + for positive numbers or as
a — fornegative numbers.

- Whena — sign is placed at the end of the field, it will cause a
negative sign to appear after all negative numbers and will
appear as a space for positive numbers.

%spaces % To specify astring field of more than one character,
% spaces % is used. The length of the string field will be 2
plus the number of spaces between the percent signs.

! Causes the Computer to use the first string character of the current value.

Any other character that you include in the USING string will be displayed as a string
literal.

The following program will help demonstrate these format specifiers:

1@ INPUT "TYPE IN FORMAT: THEN DATA"S Afs A
2B PRINT USING A%35 A
A0 GOTO 1@

RUN this program and try various specifiers and strings for A$ and various values
for A.

For Example:
*RUN
TYPE IN FORMATs THEN DATA7 $#.#s 12,12
12.1
TYPE IN FORMATs THEN DATA7 ##.#: 1.34
1.3
TYPE IN FORMATs THEN DATA7? ###.##: 10006, 33
LAy . 33
TYPE IN FORMATs THEN DATA?

The % sign is automatically printed if the field is not large enough to contain the
number of digits found in the numeric value. The entire number to the left of the
decimal will be displayed preceded by this sign.
*RUN)
TYPE IN FORMATs THEN DATA? ##.##, 12.127
12.13
TYPE IN FORMATs THEN DATAY

Note that the number was rounded to two decimal places.

3/5

TRS-80 MODEL Il

TYPE IN FORMAT: THEN DATA7 +##.##. 12,12

TYPE IN FORMAT: THEN DATA? "THE ANSWER I& 34, ##°, —13, 13
THE ANSWER I8 -12.12

TYPE IN FORMATs THEN DATA? ##., ##+. 13,132

a1z

TYPE IN FORMATs THEN DATA? ##. ##+s ~132.12

12,138~

TYPE IN FORMATs THEN DATA? ##.##-y 13,12

12.12

TYPE IN FORMATs THEN DATA7 ##.##-s ~132.132

Late La-

TYPE IN FORMAT: THEN DATA? "%x## IN TOTAL."s 12.12
*¥®12 IN TOTAL.
TYPE IN FORMATs THEN DATA7? dd##. ##. 12,13
$ 1a2.12
TYPE IN FORMATs THEN DATA? se###.##, 12,132
Hla. 12
TYPE IN FORMATs THEN DATA7 %x$H##¥. ##, 12,12
kBl 12
TYPE IN FORMATs THEN DATA? "#.### #H4", 1234547
1o 234570
TYPE IN FORMATs THEN DATA?

Another way of using the PRINT USING statement is with the string field specifiers
*“1”” and % spaces %.

Examples:

PRINT USING “!I"; string
PRINTUSING “ % %”; string

The ““!”’ sign will allow only the first letter of the string to be printed. The ‘%
spaces %’ allows spaces + 2 characters to be printed. Again, the string and
specifier can be expressed as string variables. The following program will
demonstrate this feature:

1@ INPUT "TYPE IN THE FORMATs THEN THE STRING DATA": A$,
2@ PRINT USING A%: B
38 GOTO 1@

and RUN it:

TYPE IN THE FORMAT» THEN THE STRING DATA? 's ARCDE
A

TYPE IN THE FORMATs THEN THE STRING DATA? “4%4s ABCDE
AR

TYPE IN THE FORMATs THEN THE STRING DATA? % %» ABCDE
ABCD

TYPE IN THE FORMATs THEN THE STRING DATA?

3/6

Bs

Multiple strings or string variables can be joined together (concatenated) by these

specifiers. The ““!”” sign will allow only the first letter of each string to be printed.
For example:

1@ INPUT "TYPE IN THREE NAMES"3S Ad$s B%s (%
2@ PRINT USING "!"35 A% BEs %
30 GOTO 10

AndRUNIt. . .
*RUN
TYPE IN THREE NAMES? ABCs DEFs GHI
ADG
TYPE IN THREE NAMES?

By using more than one *‘!”’ sign, the first letter of each string will be printed with
spaces inserted corresponding to the spaces inserted between the ““!’” signs. To
illustrate this feature, make the following change to the last little program:

2@ PRINT USING "1V 1%y Ady Bds CH
AndRUNIL. . .

= RUN

TYPE IN THREE NaAMES? ARCs DEFs GHI

ADG

TYPE IN THREE NAMES?

Spaces now appear between letters A, D and G to correspond with those placed
between the three “‘!”’ signs.

Try changing “‘!'! " to **%%’’ in line 20 and run the program.

The following program demonstrates one possible use for the PRINT USING
statement.

510 CLS

D20 A% = "exSdHds HHddEEE. #HE DOLLARS®

530 INPUT "WHAT IS5 YOUR FIRST NAME": F4
540 INPUT "WHAT I8 YOUR MIDDLE NAMEY3: Mg
5@ INPUT "WHAT IS5 YOUR LAST NAME": L%
560 INPUT "ENTER THE AMOUNT PAYABLE"3 P
570 PRINT: PRINT "PAY TO THE ORDER OF "3

580 PRINT USING "!'. !'. % A's Fés Mébs LS
600 PRINT: PRINT USING A%; P
28 END

3/7

TRS-80 MODEL il

cens:

RUN the program. Remember, to save programming time, use the
PRINT. Your display should look something like this:
HHAT 186 YOUR FIRST NAME? ALBERT
WHAT TS YOUR MIDDLE NAME? RARCUBE]
WHAT T8 YOUR LAST MNMAME? COOSEY
ENTER THE AMOUNT PAYABRLE? 12385.34

sign for

FAY TO THE ORDER OF A. B. COOBEY

FREaed L2y 385, 30 DOLLARS

If you want to use a double-precision amount without rounding off or going into
scientific notation, then simply add the double precision sign (#) after the variable
Pin Lines 560 and 600. You will then be able to use amounts up to 16 decimal
places long.

INPUT item list

Causes Computer to stop execution until you enter the specified number of values
viathe keyboard. The INPUT statement may specify a list of string or numeric
variables to be input. The items in the list must be separated by commas.

100 INPUT X$, X1, Z$, Z1

This statement calls for you to input a string-literal, a number, another string literal,
and another number, in that order. When the statement is encountered, the
Computer will display a

?
You may then enter the values all at once or one at a time. To enter values all at

once, separate them by commas. (If your string literal includes leading blanks,
colons, or commas, you must enclose the string in quotes.)

For example, when line 100 (above) is RUN and the Computer is waiting for your
input, you could type

JIM,50,JACK,40 ENTER

The Computer will assign values as follows:

X$="JIM" X1=50 Z$="JACK” Z1=40

If you the values one at a time, the Computer will display a
??

. . indicating that more data is expected. Continue entering data until all the
variables have been set, at which time the Computer will advance to the next
statement in your program.

3/8

Be sure to enter the correct type of value according to what is called for by the INPUT
statement. For example, you can’t input a string-value into a numerical variable. If
you try to, the Computer will display a

?REDO
?

and give you another chance to enter the correct type of data value, starting with the

first value called for by the INPUT list. The Computer will accept numeric data for

string input.

NOTE: You cannot input an expression into a numerical value — you must input a
simple numerical constant.

Example:

1@ INPUT Xi1. Yi#
2@ OPRINT Xls Y1$

30 END
 RUN
77 o+ 3
YREDO
7 10
77 "THIS 16 A COMMA 5 "
10 THIS IS A COMMA o

It was necessary to put quotes around **THIS IS A COMMA. " because the string
contained a comma.

If you type in more data elements than the INPUT statement specifies, the Computer
will display the message

?EXTRAIGNORED
and continue with normal execution of your program.

If you press (ENTER) without typing anything, the variables will have the values they
were previously assigned.

You can also include a *‘prompting message’’ in your INPUT statement. This will
make it easier to input the data correctly. The prompting message must
immediately follow “INPUT”’, must be enclosed in quotes, and must be followed by
a semi-colon.

Example:
1@ INPUT "ENTER NAMEs AGE" 3 N#$s A
20 OPRINT "HELLOs "3 N&3 "y YOU ARE AT LEAST"3 A& % 34653

RUN
ENTER NAME: AGE? DO RAMEYs 31
HELLO: DO RAMEYs YOU ARE AT LEAST 11315 DAYS OLD

"DAYS OLD"

3/9

TRS-80 MODEL lli

DATA item list

Lets you store data inside your program to be accessed by READ statements. The
data items will be read sequentially, starting with the first item in the first DATA
statement, and ending with the last item in the last DATA statement. Items in a DATA
list may be string or numeric constants — no expressions are allowed. If your string
values include colons, commas or leading blanks, you must enclose these values in
quotes.

Itis important that the data types in a DATA statement match up with the variable
types in the corresponding READ statement. DATA statements may appear anywhere
itis convenient in a program. Generally, they are placed consecutively, but this is
not required.

Examples:

1@ READ N1%s Nz$s N3s N4
20 DATA THIS I8 ITEM ONEs THIS IS5 ITEM TWOs 39 4
3@ PRINT Ni$s NZ$s N3s N4

See READ, RESTORE.

READ item list

Instructs the Computer to read a value from a DATA statement and assign that value
to the specified variable. The first time a READ is executed, the first value in the first
DATA statement will be used; the second time, the second value in the DATA
statement will be read. When all the items in the first DATA statement have been
read, the next READ will use the first value in the second DATA statement; etc. (An
Out-of-Data error occurs if there are more attempts to READ than there are DATA
items.) The following program illustrates a common application for READ/DATA
statements.

3/10

7o
716
720
T30
740
750
768
el
7860

PRINT "NAME" s " AGE"

READ N%

IF N$ = "END" THEM PRINT "END OF LIST": END
READ AGE

IF AGE < 18 PRINT N$.: AGE

GOTO 718

DATA "SMITHs JOMN"s J@s "ANDERSON:T.M."s 20
DATA "JONESs BILL"s 15y "DOE, SALLY"s 21
DATA "COLLINSGs ANDY"s 175 END

The program locates and prints all the minors’ names from the data supplied. Note
the use of an END string to allow READing lists of unknown length.

See DATA, RESTORE

RESTORE

Causes the next READ statement executed to start over with the first item in the first
DATA statement. This lets your program re-use the same DATA lines.

Example:

8310
g0
8330
840
856
g60

READ X
RESTORE
READ Y
PRINT X» Y
DATA 5@y 60
END

Because of the RESTORE statement, the second READ statement starts over with the
first DATA item.

See READ, DATA

3/11

 TRS-80 MODEL Iii

LPRINT
This command or statement allows you to output information to the Line Printer.

For example, LPRINT A will list the value of A to the line printer. LPRINT can also be
used with all the options available with PRINT except PRINT @.

Examples:
LPRINT variable or expression lists the variable or expression to the line printer.
LPRINT USING prints the information to the line printer using the format specified.

LPRINT TAB will move the line printer carriage position to the right as indicated by
the TAB expression.

Example:
10LPRINT TAB (5) “NAME” TAB (30) “ADDRESS” STRING$(63,32) “BALANCE”
will print NAME at column 5, ADDRESS at column 30, and BALANCE at column 100.

See PRINT.

PRINT #-1, item list

Prints the values of the specified variables onto cassette tape. (Recorder must be
properly connected and set in Record mode when this statement is executed.)

Example:

B0 Al = -30.334: Bd = "GTRING-VALUE"
Q@@ PRINT #-1s Als B&s "THAT’S ALLL"
1@ END

This stores the current values of Al and B$, and also the string-literal ‘“THAT’S
ALL’’. The values may be input from tape later using the INPUT #-1 statement. The
INPUT #-1 statement must be identical to the PRINT #-1 statement in terms of
number and type of items in the PRINT #- 1/INPUT lists. See INPUT #-1.

Special Note:

The values represented in item list must not exceed 248 characters total; otherwise
all characters after the first 248 will be truncated. For example, PRINT #—1, A#,
B#,C#,D#, E#,F#,G#, H#,1#,J#, A$ will probably exceed the maximum
record length if A$ is longer than about 75 characters. If you have a lengthy list, you
should break it up into two or more PRINT# statements.

3/12

INPUT #-1, item list

Inputs the specified number of values stored on cassette and assigns them to the
specified variable names.

Example:
50 INPUT #-1,X,P$,T$

When this statement is executed, the Computer will turn on the tape machine, input
values in the order specified, then turn off the tape machine and advance to the next
statement. If a string is encountered when the INPUT list calls for a number, a bad
file data error will occur. If there are not enough data items on the tape to **fill’” the
INPUT statement, an Out of Data error will occur.

The Input list must be identical to the Print list that created the taped
data-block (same number and type of variables in the same sequence.)

Sample Program

Use the two-line program supplied in the PRINT# description to create a short data
file. Then rewind the tape to the beginning of the data file, make all necessary
connections, and put cassette machine in Play mode. Now run the following
program.

1@ INPUT #-1: Als B%s L%

2B PRINT Als Bes L%

20 IF L% = "THAT’& AlLL" THEN END

40 REM PROGRAM COULD GO BACK TO LLINE 18 FOR MORE DATA

This program doesn’t care how long or short the data file is, so long as:
1) thefile was created by successive PRINT# statements identical in form to
line 10
2) thelastitemin the last data tripletis ““THAT’S ALL"".

3/13

4/Program Statements

MODEL 11 BASIC makes several assumptions about how to run your program. For

example:

* Variables are assumed to be single-precision (unless you use type declaration
characters— see Chapter 1, ‘‘Variable Types’’).

* A certain amount of memory is automatically set aside for strings and arrays —
whether you use all of it or not.

* Execution is sequential, starting with the first statement in your program and
ending with the last.

The statements described in this chapter let you override these assumptions, to give
your programs much more versatility and power.

NOTE: All BASIC statements except INPUT and INPUT#-1 can be used in the
Immediate Mode as well as in the Execute Mode.

Statements described in this chapter:

Tests
Type Assignment & Sequence of (Conditional
Definition Allocation Execution Statements)

DEFINT CLEAR~R END IF
DEFSNG DIM STOP THEN
DEFDBL LET GOTO ELSE
DEFSTR GOosuB

RETURN

ON...GOTO

ON. .. GOSuB

FOR-NEXT-STEP

ERROR

ONERRORGOTO

RESUME

REM

4.1

" TRS-80 MODEL i
R A R s e DR

DEFINT letter range

Variables beginning with any letter in the specified range will be stored and treated
as integers, unless a type declaration character is added to the variable name. This
lets you conserve memory, since integer values take up less memory than other
numeric types. And integer arithmetic is faster than single or double precision
arithmetic. However, a variable defined as integer can only take on values between
— 32768 and + 32767 inclusive.

Examples:
10 DEFINTA, I, N

Afterline 10, all variables beginning with A, I or N will be treated as integers. For
example, A1, AA, I3 and NN will be integer variables. However, A1#, AA#, I3#
would still be double precision variables, because of the type declaration
characters, which always over-ride DEF statements.

10 DEFINTI-N

Causes variables beginning with I, J, K, L, M or N to be treated as integer
variables.

DEFINT may be placed anywhere in a program, but it may change the meaning of
variable references without type declaration characters. Therefore it is normally
placed at the beginning of a program.

See DEFSNG, DEFDBL, and Chapter 1.

DEFSNG letter range

Causes any variable beginning with a letter in the specified range to be stored and
treated as single precision, unless a type declaration character is added. Single
precision variables and constants are stored with 7 digits of precision and printed
out with 6 digits of precision. Since all numeric variables are assumed to be single
precision unless DEFined otherwise, the DEFSNG statement is primarily used to
re-define variables which have previously been defined as double precision or
integer.

Example:
100 DEFSNG , W-Z

Causes variables beginning with the letter [or any letter W through Z to be treated
as single precision. However, 1% would still be an integer variable, and I# a double
precision variable, due to the use of type declaration characters.

See DEFINT, DEFDBL, and Chapter 1.

4/2

DEFDBL letter range

Causes variables beginning with any letter in the specified range to be stored and
treated as double-precision, unless a type declaration character is added. Double
precision allows 17 digits of precision; 16 digits are displayed when a double
precision variable is PRINTed.

Example:
10 DEFDBL S-Z, A-E

Causes variables beginning with one of the letters S through Z or A through E to be
double precision.

DEFDBL is normally used at the beginning of a program, because it may change the
meaning of variable references without type declaration characters.

See DEFINT, DEFSNG, and Chapter 1.

DEFSTR letter range

Causes variables beginning with one of the letters in the specified range to be stored
and treated as strings, unless a type declaration character is added. If you have
CLEARed enough string storage space, each string can store up to 255 characters.

Example:
10 DEFSTR L-Z

Causes variables beginning with any letter L through Z to be string variables, unless
atype declaration character is added. After line 10 is executed, the assignment
L1 = “WASHINGTON"’ will be valid.

See CLEAR n, Chapter 1, and Chapter 5.

4/3

TRS-80 MODEL Il

CLEAR~R

When used with an argument » (1 can be a constant or an expression), this statement
causes the Computer to set aside n bytes for string storage. In addition all variables
are set to zero. When the TRS-80 is turned on, 50 bytes are automatically set aside for
strings.

The amount of string storage CLEARed must equal or exceed the greatest number of
characters stored in string variables during execution; otherwise an Out of String
Space error will occur.

Example:
10 CLEAR 1000
Makes 1000 bytes available for string storage.

By setting string storage to the exact amount needed, your program can make more
efficient use of memory. A program which uses no string variables could include a
CLEAR O statement, for example. The CLEAR argument must be non-negative, or an
error will result.

DIM name (diml, dim2, . . ., dimK)

Lets you set the ‘*‘depth’’ (number of elements allowed per dimension) of an array
or list of arrays. If no DIM statement is used, a depth of 11 (subscripts 0-10) is
allowed for each dimension of each array used. To create an array with more than
three dimensions, you must use DIM.

Example:
10 DIM A(5), B(2,3), C$(20)

Sets up a one-dimension array A with subscripted elements 0-5; a two-dimension
array B with subscripted elements 0,0 to 2,3; and a one-dimension string array C$
with subscripted elements 0-20. Unless previously defined otherwise, arrays A and
B will contain single-precision values.

DIM statements may be placed anywhere in your program, and the depth specifier
may be a number or a numerical expression.

Example:

40 INPUT “NUMBEROFNAMES”; N
50 DIM NA(N,2)

Tore-dimension an array, you must first use a CLEAR statement, either with or
without an argument. Otherwise an error will result.

4/4

Example Program:

18 AAl4) = 11.5
2@ DIM A6lT)
READY

FRUN

7DD ERROR IN 2@
READY

See Chapter 6, ARRAYS.

LET variable = expression

May be used when assigning values to variables. Radio Shack Model III BASIC does
not require LET with assignment statements, but you might want to use it to ensure
compatibility with those versions of BASIC that do require it.

Examples:

100 LETA$="AROSEISAROSE”
110 LETB1=1.23
120 LETX=X-Z1

In each case, the variable on the left side of the equals sign is assigned the value of
the constant or expression on the right side.

END

Terminates execution normally (without a BREAK message). Some versions of
BASIC require END as the last statement in a program; with Model Il BASIC it is
optional. END is primarily used to force execution to terminate at some point other
than the physical end of the program.

Example:

1@ INPUT 51 82
2@ GOSUR 100

3@ REM MORE PROGRAM LINES HERE...

99 END : REM PROTECTIVE END-BLOCK
100 H = SOR(S1*51 + 5ZxBX)

113 RETURN

The END statement in line 99 prevents program control from ‘‘crashing’’ into the
subroutine. Now line 100 can only be accessed by a branching statement such as 20
GOSUB 100.

4/5

TRS-80 MODEL Il

STOP

Interrupts execution and prints a BREAK IN /ine number message. STOP is primarily
adebugging aid. During the break in execution, you can examine or change
variable values. The command CONT can then be used to re-start execution at the
point where it left off. (If the program itself is altered during a break, CONT cannot
be used.)

Example:

18 X = RNDC(1@)
2@ BTOR

A0 GOSUE 100a
9 END

190 REM

1018 RETURN

Suppose we want to examine what value for X is being passed to the subroutine
beginning at line 1000. During the break, we can examine X with PRINT X.

GOTO line number

Transfers program control to the specified line number. Used alone, GOTO line
number results in an unconditional (or automatic) branch; however, test statements
may precede the GOTO to effect a conditional branch.

Example:
200 GOTO10
When 200 is executed, control will automatically jump back to line 10.

You can use GOTO in the Immediate Mode as an alternative to RUN. GOTO line
number causes execution to begin at the specified line number, without an
automatic CLEAR. This lets you pass values assigned in the Immediate Mode to
variables in the Execute Mode.

See IF,THEN,ELSE,ON... GOTO.

4/6

GOSUB line number

Tranfers program control to the subroutine beginning at the specified line number
and stores an address to RETURN to after the subroutine is complete. When the
Computer encounters a RETURN statement in the subroutine, it will then return
control to the statement which follows GOSUB.

If you don’t RETURN, the previously stored address will not be deleted from the area
of memory used for saving information, called the stack. The stack might
eventually overflow, but, even more importantly, this address might be read
incorrectly during another operation, causing a hard-to-find program error. So. . .
always RETURN from your subroutines. GOSUB, like GOTO may be preceded by a
test statement. See IF,THEN,ELSE,ON...GOSUB.

Example Program:

100 GOSUE 200

11@ PRINT "BACK FROM THE SUBROUTINE": END
200 PRINT "EXECUTING THE SUBROUTINE"

212 RETURN

READY

*RUN

EXECUTING THE SUBROUTINE

RACK FROM THE SURROUTINE

Control branches from line 100 to the subroutine beginning at line 200. Line 210
instructs Computer to return to the statement immediately following GOSUB, that
is, line 110.

RETURN

Ends a subroutine and returns control to statement immediately following the most
recently executed GOSUB. If RETURN is encountered without execution of a
matching GOSUB, an error will occur. See GOSUB.

4/7

TRS-80 MODEL il

ON n GOTO line number, ..., line number

This is a multi-way branching statement that is controlled by a test variable or
expression. The general format for ON n GOTO is:

ON expression GOTO 1st line number, 2nd line number, . . ., Kth line number
expression must be between 0 and 255 inclusive.

WhenON. . . GOTO s executed, first the expression is evaluated and the integer
portion. . . INT(expression). . . is obtained. We’ll refer to this integer portion as J.
The Computer counts over to the Jth element in the line-number list, and then
branches to the line number specified by that element. If there is no Jth element
(thatis, if J > K or J = 0 in the general format above), then control passes to the next
statement in the program.

If the test expression or number is less than zero, or greater than 255, an error will
occur. The line-number list may contain any number of items.

For example:
100 ONMIGOTO 150, 160, 170, 150, 180

says “‘Evaluate MI. If integer portion of M1 equals 1 then go to

line 150;

Ifitequals 2, then go to 160;

Ifitequals 3, then go to 170;

Ifitequals 4, then go to 150;

Ifitequals 5, then go to 180;

If the integer portion of Mi doesn’t equal any of the numbers 1 through 5,
advance to the next statement in the program.”’

Sample Program

1080 INPUT "ENTER A NUMBER"3; X

110 ON BGN(X) + 2 GOTO 200, 210, 220
200 PRINT "NEGATIVE": END

210 PRINT "ZERO": END

220 PRINT "POSITIVE": END

SGN(X) returns — 1 for X less than zero; 0 for X equal to zero; and + 1 for X greater
than 0. By adding 2, the expression takes on the values 1, 2, and 3, depending on
whether X is negative, zero, or positive. Control then branches to the appropriate
line number.

4/8

ON n GOSUB line number, ..., line number

Works like ON 72 GOTO, except control branches to one of the subroutines specified
by the line numbers in the line-number list.

Example:

100 INPUT "CHOOSE 1s &s OR 3"3 1
113 ON I GOSUR 200s 308, 400

12@0 END

200 PRINT "SUBROUTINE #1": RETURN
BB PRINT "SUBROUTINE #2": RETURN
400 PRINT "SURROUTINE #3": RETURN

The test object n may be a numerical constant, variable or expression. It must have
anon-negative value or an error will occur.

See ON n GOTO.

FOR counter = exp TO exp STEP exp
NEXT counter

Opens an iterative (repetitive) loop so that a sequence of program statements may
be executed over and over a specified number of times. The general form is
(brackets indicate optional material):

line# FOR counter-variable = initial value TO final value [STEP increment]

line# NEXT [counter-variable]

In the FOR statement, initial value, final value and increment can be constants,
variables or expressions. The first time the FOR statement is executed, these three
are evaluated and the values are saved; if the variables are changed by the loop, it
will have no effect on the loop’s operation. However, the counter variable must
not be changed or the loop will not operate normally.

The FOR-NEXT-STEP loop works as follows: the first time the FOR statement is
executed, the counter is set to the ¢ ‘initial value.”” Execution proceeds until a NEXT
statement is encountered. At this point, the counter is incremented by the amount
specified in the STEP increment. (If the increment has a negative value, then the
counter is actually decremented.) If STEP increment is not used, an increment of 1 is
assumed.

4/9

TRS-80 MODEL il
O A RS

Then the counter is compared with the final value specified in the FOR statement. If
the counter is greater than the final value, the loop is completed and execution
continues with the statement following the NEXT statement. (If increment was a
negative number, loop ends when counter is less than final value.) If the counter has
not yet exceeded the final value, control passes to the first statement after the FOR
statement.

Example Programs:

12 FOR I =
2@ PRINT I3
3@ NEXT
READY
+RUN

i@ 9 8 7 &6 5 4 3 =
READY

1@ TO 1 STEP -1

1@ FOR K = @2 TO 1 STEP .3
2@ PRINT K3

3@ NEXT

READY

*RUN

@ .3 .6 .9

READY

AfterK = .9isincremented by .3, K=1.2. This s greater than the final value 1,
therefore loop ends without ever printing final value.

1D FOR K = 4 TO @
20 PRINT K3

30 NEXT

READY

*RUN

4

READY

No STEP is specified, so STEP 1 is assumed. After K is incremented the first time, its
valueis 5. Since 5 is greater than the final value 0, the loop ends.
i0J = 3: K = Bs | = 2

2@ FOR I = J TO K + 1 STEP L.

30 J = @: K = @: L = @

40 PRINT 13

5@ NEXT

READY

*RUN

3 5 7 9

READY

o

R R RSy

4/10

The variables and expressions in line 20 are evaluated once and these values
become constants for the FOR-NEXT-STEP loop. Changing the variable values later
has no effect on the loop.

FOR-NEXT loops may be ‘‘nested’’:

i@ FOR I = 1 TO 3
20 PRINT "OUTER LOOP"

3@ FOR J = 1 TO 2

40 PRINT " INNER LOOP"
50 NEXT J

68 NEXT I

RUM

OUTER LOOP

INNER LOOP

INNER LOOP
OUTER LOOP

INNER LOOP

INNER L.OOF
OUTER LOOP

INNER LOOP

INNER LOOP

READY

Note that each NEXT statement specifies the appropriate counter variable; however,
this is just a programmer’s convenience to help keep track of the nesting order. The
counter variable may be omitted from the NEXT statements. But if you do use the
counter variables, you must use them in the right order; i.e., the counter variable
for the innermost loop must come first.

Itis also advisable to specify the counter variable with NEXT statements when your
program allows branching to program lines outside the FOR-NEXT loop.

Another option with nested NEXT statements is to use a counter variable list.
Delete line 50 from the above program and change line 60:
60 NEXTJ,I

Loops may be nested 3-deep, 4-deep, etc. The only limit is the amount of memory
available.

4/11

TRS-80 MODEL il
e

ERROR code

Lets you *‘simulate’” a specified error during program execution. The major use of
this statement is for testing an ON ERROR GOTO routine. When the ERROR code
statement is encountered, the Computer will proceed exactly as if that kind of error
had occurred. Refer to Appendix B for a listing of error codes and their meanings.

Example Program:
1@ ERROR 1
READY

3 RUM
NF Error in 100
READY

1is the error code for ‘‘attempt to execute NEXT statement without a matching FOR
statement’”’.

See ON ERROR GOTO, RESUME.

ONERROR GOTO line number

When the Computer encounters any kind of error in your program, it normally
breaks out of execution and prints an error message. With ON ERROR GOTO, you can
setup an error-trapping routine which will allow your program to *‘recover’’ from
anerror and continue, without any break in execution. Normally you have a
particular type of error in mind when you use the ON ERROR GOTO statement. For
example, suppose your program performs some division operations and you have
not ruled out the possibility of division by zero. You might want to write a routine to
handle a division-by-zero error, and then use ON ERROR GOTO to branch to that
routine when such an error occurs.

Example:

1@ ON ERROR GOTO 180

2B ha =170

98 END

188 PRINT"ERROR # "3 ERR/Z + 1
110 RESUME 9@

Inthis “‘loaded’” example, when the Computer attempts to execute line 20, a
divide-by-zero error will occur. But because of line 10, the Computer will simply
ignore line 20 and branch to the error-handling routine beginning at line 100.

NOTE: The ON ERROR GOTO must be executed before the error occurs or it will
have no effect.

N R S

4/12

The ON ERROR GOTO statement can be disabled by executing an ON ERROR GOTO 0.
If you use this inside an error-trapping routine, BASIC will handle the current error
normally.

The error handling routine must be terminated by a RESUME statement. See
RESUME.

RESUME line number

Terminates an error handling routine by specifying where normal execution is to
resume.

RESUME without a line number and RESUME 0 cause the Computer to return to the
statement in which the error occurred.

RESUME followed by a line number causes the Computer to branch to the specified
line number.

RESUME NEXT causes the Computer to branch to the statement following the point
at which the error occurred.

Sample Program with an Error Handling Routine

&0% ON ERROR GOTO 440

610 INPUT "SEERING SaUARE ROOT oOF"3 X

620 PRINT SaR((X)

638 GOTO 610

&40 PRINT "IMAGINARY ROOT:"35 SQR(-X)s " + I
650 RESUME 610

668 END

RUN the program and try inputting a negative value.

You must place a RESUME statement at the end of your error trapping routine, so
that later errors may also be trapped.

4/13

TRS-80 MODEL I

REM

Instructs the Computer to ignore the rest of the program line. This allows you to
insert comments (REMarks) into your program for documentation. Then, when you
(or someone else) look at a listing of your program, it’ll be a lot easier to figure out.
If REM is used in a multi-statement program line, it must be the last statement.

Example Program:
718 REM *% THI& REMARK INTRODUCES THE PROGRAM #%
720 REM ®% AND POSSIRLY THE PROGRAMMERs TOO. %%

730 REM %% %
740 REM #% THIS REMARK EXPLAING WHAT THE ¥
750 REM xx VARIOUS VARIABLES REPRESENT: £ 2
7T6B REM % O = CIRCUMFERENCE R = RADIUS % ¥
778 REM %% D = DIAMETER %
7860 REM

Any alphanumeric character may be included in a REM statement, and the
maximum length is the same as that of other statements: 255 characters total.

In Model III BASIC, an apostrophe * (SHIFT) (7)) may be used as an abbreviation
for :REM.

188 == TTHIGs TOo ITE & REMARE

IF true/false expression THEN action-clause

Instructs the Computer to test the following logical or relational expression. If the
expression is True, control will proceed to the ““action’’ clause immediately
following the expression. If the expression is False, control will jump to the
matching ELSE statement (if there is one) or down to the next program line.

In numerical terms, if the expression has a non-zero value, it is always equivalent to
alogical True.

Examples:
@@ TF X = 127 THEN PRINT "OUT OF RAMGE":@ END

If X is greater than 127, control will pass to the PRINT statement and then to the END
statement. But if X is not greater than 127, control will jump down to the next line
i the program, skipping the PRINT and END statements.

F@ = X AND X = Y OTHEN Y = X 4+ 18@

it soth expressions are True then Y will be assigned the value X + 180. Otherwise
~:ntrol will pass directly to the next program line, skipping the THEN clause.

“ze THEN, ELSE.

THEN statement or line number

Initiates the ‘‘action clause’’ of an IF-THEN type statement. THEN is optional except
when it is required to eliminate an ambiguity, as in IF A < 0 100. THEN should be
used in IF-THEN-ELSE statements.

ELSE statement or line number

Used after IF to specify an alternative action in case the IF test fails. (When no ELSE
statement is used, control falls through to the next program line after a test fails.)

Examples:
1A@ INPUT Ad: TF A% = "YE&" THEN 380 ELSE END

Inline 100, if A$ equals *“YES” then the program branches to line 300. But if A$
does not equal ““YES’’, program skips over to the ELSE statement which then
instructs the Computer to end execution.

Sl TF & < BOTHEN PRINT "6<B" ELSE PRINT "Bd=an

If A is less than B, the Computer prints that fact, and then proceeds down to the next
program line, skipping the ELSE statement. If A is not less than B, Computer jumps
directly to the ELSE statement and prints the specified message. Then control
passes to the next statement in the program.

AO@ TF AXL@R1 THEN B o= 1788 & = A/S ELSE 268

If A>.001 is True, then the next two statements will be executed, assigning new
values to B and A. Then the program will drop down to the next line, skipping the
ELSE statement. Butif A>.001 is False, the program jumps directly over to the
ELSE statement, which then instructs it to branch to line 260. Note that GOTO is not
required after ELSE.

IF-THEN-ELSE statements may be nested, but you have to take care to match up the

IFs and ELSES.

810 INPUT "ENTER TWO NUMBERS": As B

820 IF A <= B THEN IF A < B PRINT A3® ELSE PRINT "NEITHER
"3: ELSE PRINT B3 -

830 PRINT "I5 SMALLERY

840 END

RUN the program, inputting various pairs of numbers. The program picks out and
prints the smaller of any two numbers you enter.

4/15

5/Strings

“Without string-handling capabilities, a computer is just a super-powered
calculator.”’ There’s an element of truth in that exaggeration; the more you use the
string capabilities of Model I11 BASIC, the truer the statement will seem.

InModel 1l BASIC any valid variable name can be used to contain string values, by
the DEFSTR statement or by adding a type declaration character to the name. And
each string can contain up to 255 characters.

Moreover, you can compare strings to alphabetize them, for example. You can take
strings apart and string them together (concatenate them). For background
material to this chapter, see Chapter 1, ‘‘Variable Types’’ and ‘*‘Glossary’’, and
Chapter 4, DEFSTR.

Functions covered in this chapter:

FRE (string) LEFTS$ STRING$

INKEY$S MID$ TIMES

LEN RIGHTS$ VAL

ASC STR$

CHR$

NOTE :Whenever string is given as a function argument, you can use a string
expression or constant.

String Space

Fifty bytes of memory are set aside automatically to store strings. If you run out of
string space, you will get an OS error and you should use the CLEAR #n command to
save more space.

Note: CLEAR also sets variables to zero or null strings.

To calculate the space you’ll need, multiply the amount of space each variable takes
(See VARPTR) by the number of string variables you are using, including temporary
variables.

Temporary variables are created during the calculation of string functions.
Therefore even if you have only a few short string variables assigned in your
program, you may run out of string space if you concatenate them several times.

51

TRS-80 MODEL il

ASC (string)

Returns the ASCII code for the first character of the specified string. The
string-argument must be enclosed in parentheses. A null-string argument will cause
an error to occur.

100 PRINT ASC(*A”)
110 T$="AB": PRINT ASC (T$)

Lines 100 and 110 will print the same number.

The argument may be an expression involving string operators and functions:
200 PRINT ASC(RIGHTS$(T$, 1))

Refer to the ASCII Code Table, Appendix C.

CHRS (expression)

Performs the inverse of the ASC function: returns a one-character string whose
character has the specified ASCIL, control or graphics code. The argument may be
any number from 0 to 255, or any variable expression with a value in that range.
Argument must be enclosed in parentheses.

100 PRINT CHR$(35) Prints a number-sign #

Using CHRS, you can even assign quote-marks (normally used as string-delimiters)
to strings. The ASCII code for quotes “* is 34. So A$ = CHR$(34) assigns the value ¢ to
AS.

410 A% = CHR®(34)
420 PRINT "HE SAIDs "3 A3 "HELLO."3; A%

5/2

CHR$ may also be used to display any of the graphics or special characters. (See
Appendix C, Character Codes.)

466 CLS

479 FOR T = 129 To 191
480 PRINT I35 CHR&(I1)s
490 NEXT

500 GOTO 56

(RUN the program to see the various graphics characters.)

Codes 0-31 are display control codes. Instead of returning an actual display
character, they return a control character. When the control character is PRINTed,
the function is performed. For example, 23 is the code for 32 character-per-line
format; so the command, PRINT CHR$(23) converts the display format to 32
characters per line. (Hit CLEAR, execute CLS, or execute PRINT CHR$(28) to return to
64 character-per-line format.)

FRE (string)

When used with a string variable or string constant as an argument, returns the
amount of string storage space currently available. Argument must be enclosed in
parentheses. FRE causes BASIC to start searching through memory for unused string
space. If your program has done a lot of string processing, it may take several
minutes to recover all the ‘‘scratch pad’’ type memory.

500 PRINT FRE(AS), FRE(L$), FRE (*Z")
All return the same value.

The string used has no significance; it is adummy variable. See Chapter 4,
CLEAR~n.

FRE(number) returns the amount of available memory (same as MEM).

5/3

TRS-80 MODEL Il
Lo e

INKEY$

Returns a one-character string determined by a keyboard check. The last key
pressed before the check is returned. If no key has been pressed, anull string
(length zero) is returned. This is a very powerful function because it lets you input
values while the Computer is executing — without using the key. The
popular video games which let you fire at will, guide a moving dot through a maze,
play tennis, etc., may all be simulated using the INKEY$ function (plus a lot of other
program logic, of course).

Characters typed to an INKEY$ are not automatically displayed on the screen.

INKEYS$ is often placed inside some sort of loop, so that the keyboard is scanned
repeatedly.

Example Program:

340 CLS
S50 PRINT @ 540 INKEY$: GOTO 550

RUN the program; notice that the screen remains blank until the first time you hit a
key. The last key hit remains on the screen until you hit another one. (The last key
hitis always saved. The INKEY$ function uses it until it is replaced by a new value.)

INKEY$ may be used in sequences of loops to allow the user to build up a longer
string.

Example:

539@ PRINT "ENTER THREE CHARACTERS®"

HDB A% = INKEY$: IF A% = "" THEN 600 ELSE PRINT A%
610 BE = INKEY$: 1F B$ = "" THEN é10@0 ELSE PRINT B%3
62 CH = INRKEY%: IF C$ = "" THEMN 620 ELSE PRINT C#%3
&30 DS = A% + B+ C%

A three-character string D$ can now be entered via the keyboard without using the

ENTER) key.

NOTE: The statement IF A$ =" " compares A$ to the null string. There are no
spaces between the double-quotes.

5/4

LEFTS (string, n)

Returns the first n characters of string. The arguments must be enclosed in

parentheses. string may be a string constant or expression, and n may be a numeric
expression.

Example Program:

&7 A% = "TIMOTHY"

LB B% = LEFTS (A% 3)

A9B PRINT Bss * ~THAT'S SHORT FOR "5 A%
LEN (string)

Returns the character length of the specified string. The string variable, expression,
or constant must be enclosed in parentheses.

T30 A% =

748 B$ o= "TOM"

750 PRINT A%y P4 BS + B%

760 PRINT LEN(A%)s LEN(BE$)s LEN(R&+BE$)

nn

5/5

TRS-80 MODEL 1l

MIDS$ (string,p,n)

Returns a substring of string with length n and starting at position p. The string
name, length and starting position must be enclosed in parentheses. string may be a
string constant or expression, and » and p may be numeric expressions or constants.
For example, MID$ (L$,3,1) refers to a one-character string beginning with the third
character of L$.

If no argument is specified for the length n, the entire string beginning at position p
is returned.

Example Program:

The first three digits of a local phone number are sometimes called the ‘‘exchange’’
of the number. This program looks at a complete phone number (area code,
exchange, last four digits) and picks out the exchange of that number.

@R INPUT "aREAS CODE AND NUMBERS (NO HYPHENS: PLEABEYY 3
810 EX$ = MID$ (Pds 443)
820 PRINT "NUMBER IS5 IN THE "3 EX4$3; " EXCHANGE.®

RIGHTS (string, n)

Returns the last n characters of string. string and n must be enclosed in parentheses.
string may be a string constant or variable, and n may be a numerical constant or
variable. If LEN(string) is less than or equal to n, the entire string is returned.

1@ INPUT "ENTER A WORD"j3 Ms

S@ TF OLEMOMS) = @ THEN 16

A@ PRINT "THE LAST LETTER WAS: "3 RIGHTS(M$s 1)
4@ GOTO 1@

STRS (expression)

Converts a numeric expression or constant to a string. The numeric expression or
constant must be enclosed in parentheses. STR$(A), for example, returns a string
equal to the character representation of the value of A. For example, if A=58.5,
then STR$(A) equals the string ‘* 58.5°". (Note the leading blank in * 58.5°’). While
arithmetic operations may be performed on A, only string operations and functions
may be performed on the string * 58.5".

PRINT STR$(X) prints X without a trailing blank; PRINT X prints X with a trailing
blank.

5/6

e

Example Program:

6l A = 58.5%5: P = ~58.95
870 PRINT STR${(A)

888 PRINT STR$R)

B9® PRINT STR%(A+E)

BB PRINT STR$(A) + BTRH(R)

STRINGS (n, ‘‘character’’ or number)

Returns a string composed of n character-symbols. For example,
STRING$(30,“*”)returnS "******************************"‘ STRING$ iS

useful in creating graphs, tables, etc.
The argument # is any numerical expression with a value of from zero to 255.

character can also be a number from 0-255; in this case, it will be treated as an
ASCIL, control, or graphics code.

Example:

13 CLEAR 208

A FOR I=128 TO 191
G A% = BTRIMGS (H44 1)
40 PRINT A%

5@ NEXT 1

5/7

TRS-80 MODEL il

TIME$

Returns today’s date and time. Your Model I1I contains a built-in clock. To use this
clock, you will want to first set it to the correct date and time. To do this, you may
type and run this little program:

1@ DEFINT A-Z

2@ DIM TM(5)

30 CL = 146924

4@ PRINT "INPUT &6 VALUES: MOs DAs YRs HRs MNs S5°
3@ INPUT TM(@)s TMC1)s TMCZ)s TM(3)s TM(4)s TM(S)
60 FOR I = @ TO 5

70 PORE CL. - Is TM(I)
BA NEXT I

90 PRINT "CLOCK IS SET®

1@® END

Once you have set the date and time with this program, you may request it any time
you want. For example, this program line:

10 PRINTTIMES
causes the Computer to print today’s date and time.

If you do not set the date and time, the Computer will keep time anyway. However,
the date and time will be set at zero when you first turn on the Computer or reset it.

NOTE: The clock is turned off during cassette operations and at certain other
times. Therefore it will need to be corrected periodically.

VAL (string)

Performs the inverse of the STR$ function: returns the number represented by the
characters in a string argument. The numerical type of the result can be integer,
single precision, or double precision, as determined by the rules for the typing of
constants (See page 1/10 in this section). For example, if A$ = 12 and B$ = 34"
then VAL (A$ + “.” + B$) returns the value 12.34. VAL(A$ + “E” + B$) returns the
value 12E34, thatis 12 x 103

VAL operates a little differently on mixed strings — strings whose values consist of
anumber followed by non-numeric characters. In such cases, only the leading
number is used in determining VAL; the non-numeric remainder is ignored.

For example: VAL (‘100 DOLLARS’’) returns 100.

5/8

This can be a handy short-cut in examining addresses, for example.

GOTO 96

Example Program:

G4 REM "WHAT SIDE OF STREET?"

5@ REM EVEN = NORTH. ODD = SOQUTH

H4H@ INPUT "ADDRESS: NUMRER OND STREET"3 AD®
Gl C o= INT(VAL(AD$)/2) » &

98B 1F ¢ = val.(AD%) THEN PRINT "NORTH SIDE":
SR PRINT "SOUTH SIDE": GOTO Y60

RUN the program, entering street addresses like ‘1015 SEVENTHAVE’’.

If the string is non-numeric or null, VAL returns a zero.

5/9

6/Arrays

Anarray is simply an ordered list of values. In Model IIl BASIC these values may be
either numbers or strings, depending on how the array is defined or typed. Arrays
provide a fast and organized way of handling large amounts of data. To illustrate
the power of arrays, this chapter traces the development of an array to store
checkbook data: check numbers, dates written, and amounts for each check.

Inaddition, several matrix manipulation subroutines are listed at the end of this
chapter. These sequences will let you add, multiply, transpose, and perform other
operations on arrays.

Note: Throughout this chapter, zero-subscripted elements are generally ignored
for the sake of simplicity. But you should remember they are available and should
be used for the most efficient use of memory. For example, after DIMA(4), array A

contains 5 elements: A(0), A(1), A(2), A(3), A(4).

For background information on arrays, see Chapter 4, DIM, and Chapter 1,

“Arrays’’ .

A Check-Book Array

Consider the following table of checkbook information:

Check # Date Written Amount
025 1-1-78 10.00
026 1-5-78 39.95
027 1-7-78 23.50
028 1-7-78 149.50
029 1-10-78 4.90
030 1-15-78 12.49

Note that every item in the table may be specified simply by reference to two
numbers: the row number and the column number. For example, (row 3, column 3)
refers to the amount 23.50. Thus the number pair (3,3) may be called the ‘“subscript
address’’ of the value 23.50.

Let’s set up an array, CK, to correspond to the checkbook information table. Since
the table contains 6 rows and 3 columns, array CK will need two dimensions: one for
row numbers, and one for column numbers. We can picture the array like this:

A(1,1)=025 A(1,2)=1.0178 A(1.3)=10.00

A(6,1)=030 A(6,2)=1.1578 A(6,3)=12.49

6/1

TRS-80 MODEL il

Notice that the date information is recorded in the form mm.ddyy. where

mm = month number, dd = day of month, and yy = last two digits of year. Since CK
is a numeric array, we can’t store the data with alpha-numeric characters
such as dashes.

Suppose we assign the appropriate values to the array elements. Unless we have
used a DIM statement, the Computer will assume that our array requires a depth of
10 for each dimension. That is, the Computer will set aside memory locations to

hold CK(7,1),CK (7,2).. . . . CK(10,1),CK(10,2) and CK(10.3). In this case, we don’t
want to set aside this much space, so we use the DIM statement at the beginning of
our program:

48 DIM CK{&s3)

Now let’s add program steps to read the values into the array CK:

GG FOR ROW = 1 TO &

60 FOR COL = 1 TO 3

7@ READ CK{ROWs COL.)

8O NEXT COLs ROW

@ DATA BE5, 1.0178: 10.00
10@ DATA B2é6s 1.0578s 39.95
110 DATA @27+ 1.@8778s 23.50
120 DATA B2Bs 1.0778s 149.50
130 DATA @29y 1.1078y 4.90
140 DATA @O30Gs 1.1578s 12.49

Now that our array is set up, we can begin taking advantage of its built-in structure.
For example, suppose we want to add up all the checks written. Add the following
lines to the program:

138 FOR ROW = 1 TO 6

168 SUM = SUM + CK({ROWs3)

170 NEXT

180 PRINT "TOTAL OF CHECKS WRITTEN":
19@ PRINT USING "$s#i#H. ##" 35 SUM

Now let’s add program steps to print out all checks that were written on a given day.

20@ PRINT "SEEKING CHECKS WRITTEN ON WHAT DATE (MM.DD YY)"3
218 INPUT DT

£2@ PRINT: PRINT "ANY CHECKS WRITTEN ARE LISTED BELOW:"

230 PRINT "CHECK #"s "AMOUNT": PRINT

240 FOR ROW = 1 TO &

“9@ IF CK(ROWs2) = DT THEN PRINT CK(ROWs1)s CK{(ROWs3)

260 NEXT

It’s easy to generalize our program to handle checkbook information for all 12
months and for years other than 1978.

R S N A D

6/2

All we do is increase the size (or ‘ ‘depth’’) of each dimension as needed. Let’s
assume our checkbook includes check numbers 001 through 300, and we want to
store the entire checkbook record. Just make these changes:

4% DIM CROADOs 3) FOET UP A 308 BY 3 ARRAY
5@ FOR ROW = 1 TO 306

and add DATA lines for check numbers 001 through 300. You’d probably want to
pack more data onto each DATA line than we did in the above DATA lines.

And you’d change all the ROW counter final values:

15@ FOR ROW = 1 TO 30@
240 FOR ROW = 1 TO 30@

Other Types of Arrays

Remember, in Model I1I BASIC the number of dimensions an array can have (and

the size or depth of the array), is limited only by the amount of memory available. Also
remember that string arrays can be used. For example, C$(X) would automatically

be interpreted as a string array. And if you use DEFSTR A at the beginning of your
program, any array whose name begins with A would also be a string array. One
obvious application for a string array would be to store text material for access by a
string manipulation program.

18 CLEAR 1200
2B DIM TXTH(13)

would set up a string array capable of storing 10 lines of text. 1200 bytes were
CLEARed to allow for 10 sixty-character lines, plus 600 extra bytes for string
manipulation with other string variables.

6/3

TRS-80 MODEL il

Array/Matrix Manipulation Subroutines

To use this subroutine, your main program must supply values for two variables N1
(number of rows) and N2 (number of columns). Within the subroutine, you can
assign values to the elements in the array row by row by answering the INPUT
statement.

1@ FOR ROW = 1 TO NI

A FOR COL = L TO N2

SO PRINT "ENTER DATA FOR "3 ROWi "#'y COL
4@ TNFUT 6 CROWY COLLD

Sl ONEXT COL.

HENEXT ROW

TEORETURN

To use this subroutine, your main program must supply values for three variables
N1 (size of dim #1), N2 (size of dim #2) and N3 (size of dim #3). Within the
subroutine, you can assign values to each element of the array using READ and
DATA statements. You must supply I x J x K elements in the following order: row by
row forK =1, row by row for K =2, row by row for K = 3, and so on for each value
of N3.

48310 REM REQUIRES DATA BTHMTS.
418 FOR K 1 TO N3

420 FOR I 1 T N1

43 FOR J = 1 TO N2

440 READ 6(1:J3K)

4538 NEXT Js Is K

468 RETURN

L I

Main program supplies values for variables N1, N2, N3. The subroutine prints the
array.

260 FOR K = 1 TO N3
3783 FOR T = 1 TO Ni
5280 FOR J = 1 TO N2

5390 PRINT A{(IsJsK)e
HBB NEXT J: PRINT
H10 NEXT It PRINT
620 NEXT K& PRINT
&SR RETURN

6/4

Main program supplies values for variables N1, N2, N3. Within the subroutine,
you can assign values to each element of the array using the INPUT statement.

660 FOR K = 1 TO N3

H7B PRINT "PAGE"s K

680 FOR I = 1 TO Ni

9@ PRINT "INPUT ROW"3; I
700 FOR J = 1 TO Nz

710 INPUT AC(TsJyK)

720 NEXT J

T30 NEXT I

740 PRINT: NEXT K

THE RETURN

Multiplication by a Single Variable: Scalar Multiplication (3 Dimensional)

780 FOR K = 1 TO N3

798 FOR J = 1 TO N2

80B FOR I = 1 TO Ml

810 B(IsJsK) = A{IsJsK) * X
820 NEXT I

830 NEXT J

840 NEXT K

850 RETURN

Multiplies each element in MATRIX A by X and constructs matrix B

Transposition of a Matrix (2 Dimensional)
880 FOR I = 1 TOo NI

890 FOR J = 1 TO N2

QU B(JsI1) = A(I+I)

P18 NEXT J

920 NEXT I

Q3B RETURN

Transposes matrix A into matrix B

6/5

TRS-80 MODEL Il

Matrix Addition (3 Dimensional)

60 FOR K = 1 TO NX

Q7 FOR J = 1 TO NZ

8B FOR I = 1 TO NI

990 C{IsJs) = A(TsJeK) + B(Ls Js K)
10068 NEXT I

@18 NEXT J

12280 NEXT K

1838 RETURN

Array Element-wise Multiplication (3 Dimensional)
1068 FOR K = 1 T0O N3

1@7@ FOR J = 1 TO N2

1988 FOR I = 1 TO Ni

109@ COIsJek) = A(IsTaK) % B(LsJsk)
1106 NEXT I

111@ NEXT J

1128 NEXT K

LL36 RETURN

Multiplies each element in A times its corresponding element in B.

Matrix Multiplication (2 Dimensional)
116@ FOR I = 1 TO Ni
1178 FOR J = 1 TO N2

TLEE OO0 =

1190 FOR K = 1 TO N3

1208 C(I«J) = C(Isd) + A(IsK) %* B(KsJ)
1218 NEXT K

1220 NEXT J

1230 NEXT I

1348 RETURN

A must be an N1 by N3 matrix; B must be an N3 by N2 matrix. The resultant matrix
Cwill be an N1 and N2 matrix. A, B, and C must be dimensioned accordingly.

6/6

7/Arithmetic Functions

Model Ill BASIC offers a wide variety of intrinsic (*‘built-in’") functions for
performing arithmetic and special operations. The special-operation functions are
described in the next chapter.

Allthe common math functions described in this chapter return single-precision
values accurate to six decimal places. ABS, FIX and INT return values whose
precision depends on the precision of the argument.

The conversion functions (CINT, CDBL, etc.) return values whose precision depends
onthe particular function. Trig functions use or return radians, not degrees. A
radian-degree conversion is given for each of the functions.

For all the functions, the argument must be enclosed in parentheses. The argument
may be either a numeric variable, expression or constant.

Functions described in this chapter:

ABS COSs INT SGN
ATN CSNG LOG SIN
CDBL EXP RANDOM SQR
CINT FiX RND TAN
ABS (x)

Returns the absolute value of the argument. ABS(X) =X for X greater than or equal to
zero, and ABS(X) = — X for X less than zero.

100 IF ABS(X)<1E - 6 PRINT “TOO SMALL"

ATN (x)

Returns the arctangent (in radians) of the argument; thatis, ATN(X) returns * ‘the
angle whose tangentis X’*. To get arctangent in degrees, multiply ATN(X) by
57.29578.

100Y =ATN(B/C)

7/

TRS-80 MODEL lii

CDBL (x)

Returns a double-prec ision representation of the argument. The value returned will
contain 17 digits, but only the digits contained in the argument will be significant.

CDBL may be useful when you want to force an operation to be done in
double-precision, even though the operands are single precision or even integers.
For example CDBL (1%)/% will return a fraction with 17 digits of precision.

100 FOR 1% =1TO 25:PRINT 1/CDBL(1%), : NEXT

CINT (x)

Returns the largest integer not greater than the argument. For example, CINT (1.5)
returns 1; CINT(— 1.5) returns — 2. For the CINT function, the argument must be in
the range — 32768 to +32767. The result is stored internally as a two-byte integer.

CINT might be used to speed up an operation involving single or double-precision
operands without losing the precision of the operands (assuming you’re only
interested in an integer result).

100K% = CINT(X#) + CINT(Y#)

COS (x)

Returns the cosine of the argument (argument must be in radians). To obtain the
cosine of X when X is in degrees, use COS(X*.01745329).

100Y = COS(X +3.3)

CSNG (x)

Returns a single-precision representation of the argument. When the argument is a
double-precision value, it is returned as six significant digits with **4/5 rounding’’
in the least significant digit. So CSNG(.6666666666666667) is returned as .666667;
CSNG(.3333333333333333) is returned as .333333.

100 PRINT CSNG (A# + B#)

7/2

EXP (x)

Returns the ‘‘natural exponential’’ of X, that is eX. This is the inverse of the LOG
function, so X = EXP(LOG(X)).

100 PRINT EXP(-X)

FIX (x)

Returns a truncated representation of the argument. All digits to the right of the
decimal point are simply chopped off, so the resultant value is an integer. For
non-negative X, FIX(X) = INT(X). For negative values of X, FIX(X) =INT(X) + 1. For
example, FIX(2.2) returns 2, and FIX(— 2.2) returns — 2.

100'Y = ABS(A —FIX(A))

This statement gives Y the value of the fractional portion of A.

INT(x)

Returns an integer representation of the argument, using the largest whole number
that is not greater than the argument. Argument is not limited to the range — 32768
to +32767. The result is stored internally as a single-precision whole number.
INT(2.5) returns 2; INT(— 2.5) returns — 3; and INT(1000101.23) returns

1000101.

100 Z=INT(A*100 + .5)/100

Gives Z the value of A rounded to two decimal places (for non-negative A).

LOG(x)

Returns the natural logarithm of the argument, that is, loge (argument). This is the
inverse of the EXP function, so X = LOG (EXP (X)). To find the logarithm of a number
to another base b, use the formula LOGy, (X) = LOG(x)/LOGe(b).For example,
LOG(32767)/LOG(2) returns the logarithm to base 2 of 32767.

100 PRINT LOG(3.3*X)

7/3

TRS-80 MODEL il

RANDOM

RANDOM is actually a complete statement rather than a function. It reseeds the
random number generator. If a program uses the RND function, you may want to put
RANDOM at the beginning of the program. This will ensure that you get an
unpredictable sequence of pseudo-random numbers each time you turn on the
Computer, load the program, and run it.

L RANDOM

HEHOPRINT RNMDOE)

B GOoTO 2 TOOOLITNE L@ JUST ONCE
RND(x)

Generates a pseudo-random number using the current pseudo-random *‘seed
number’’ (generated internally and not accessible to user). RND may be used to
produce random numbers between 0 and 1, or random integers greater than 0,
depending on the argument.

RND(0) returns a single-precision value between 0 and 1. RND(integer) returns an
integer between 1 and integer inclusive (integer must be positive and less than
32768). For example, RND(55) returns a pseudo-random integer greater than zero
and less than 56. RND(55.5) returns a number in the same range, because RND uses
the INTeger value of the argument.

100 X=RND(2) :ONXGOTO 200,300

SGN(x)

The *‘sign’’ function : returns — 1 for X negative, 0 for X zero, and + 1 for X
positive.

100 ON SGN(X) +2 GOTO 200,300,400

7/4

SIN(x)

Returns the sine of the argument (argument must be in radians). To obtain the sine
of X when X is in degrees, use SIN(X*.01745329).

100 PRINT SIN(A*B —B)

SQR(x)

Returns the square root of the argument. SQR(X) is the same as X[(1/2), only faster.

100Y = SQR(X[2 — H[2)

TAN(x)

Returns the tangent of the argument (argument must be in radians). To obtain the
tangent of X when X is in degrees, use TAN(X*.01745329).

100 Z=TAN(2*A)

NOTE: A great many other functions may be created using the above functions.
See Appendix E, ‘‘Derived Functions’’.

7/5

8/Special Features

Model 11l BASIC offers some unusual functions and operations that deserve special
highlighting. Some may seem highly specialized, as you learn more about
programming and begin to experiment with machine-language routines, they will
take on more significance. Other functions in the chapter are of obvious benefit and
will be used often (for example, the graphics functions).

Functions, statements and operators described in this chapter:

Error-Routine Other Functions

Graphics: Functions: and Statements:
SET ERL INP
RESET ERR MEM
CLS ouT
POINT PEEK

POKE

POS

USR

VARPTR

SET(x,y)

Turns on the graphics block at the location specified by the coordinates x and y. For
graphics purposes, the Display is divided up into a 128 (horizontal) by 48 (vertical)
grid. The x-coordinates are numbered from left to right, 0 to 127. The y-coordinates
are numbered from top to bottom, 0 to 47. Therefore the point at (0,0) is in the
extreme upper left of the Display, while the point at (127,47) is in the extreme
lower right corner. See the Video Display Worksheet in the Appendix.

The arguments x and y may be numeric constants, variables or expressions. They
need not be integer values, because SET(x,y) uses the INTeger portion of x andy. SET
(x,y)is valid for:

0<=x<128
0<=y<48

8/1

TRS-80 MODEL il

Examples:

100 SET (RND(128) - 1,RND(48) — 1)

Lights up arandom point on the Display.
100 INPUT X,Y: SET (X,Y)

RUN to see where the blocks are.

RESET (x,y)

Turns off a graphics block at the location specified by the coordinates x and y. This
function has the same limits and parameters as SET(x,y).

200 RESET (X,3)

CLS

““‘Clear-Screen’” — turns off all the graphics blocks on the Display and moves the
cursor to the upper left corner. This wipes out alphanumeric characters as well as
graphics blocks. CLS is very useful whenever you want to present an attractive
Display output.

184 CLS
2@ SET(RND(1ZE)-1s RND(48)-1)
3@ GOTO 20

POINT(x,y)

Tests whether the specified graphics block is “‘on’” or “‘off”’. If the block is ‘‘on’’

(thatis, if it has been SET), then POINT returns a binary True (- 1 in Model I

BASIC). If the block is ““off””, POINT returns a binary False (0 in Model I11 BASIC). Typically,
the POINT test is put inside an IF-THEN statement.

100 SET (50, 28) : IF POINT (50,28) THEN PRINT “ON” ELSE PRINT “OFF”

This line will always print the message, ‘“ON’’, because POINT(50,28) will return a
binary True, so that execution proceeds to the THEN clause. If the test failed, POINT
would return a binary False, causing execution to jump to the ELSE statement.

8/2

BASIC

ERL

Returns the line number in which an error has occurred. This function is primarily
used inside an error-handling routine accessed by an ON ERROR GOTO statement. If
no error has occurred when ERL is called, line number O is returned. However, if an
error has occurred since power-up, ERL returns the line number in which the error
occurred. If error occurred in direct mode, 65535 is returned (largest number
representable in two bytes).

Example Program using ERL

10 CLEAR 1@

2@ ON ERROR GOTO 1020

2@ TNPUT "ENTER YOUR MESEAGE" 3 M$

4@ INPUT "NOW ENTER & NUMBER"3 N

50 7 = 1/N

60 PRINT "INPUT VALUES OKAY--TRY AGAIN TO CAUSE AN ERROR"
7B GOTO 38

1008 IF ERL=30 AND (ERR/Z + 1
1218 IF ERL=40 AND (ERR/2 + 1
1028 IF ERL=50 AND (ERR/2 + 1
1030 ON ERROR GOTO @: RESUME
1043 PRINT "MESSAGE TOO LONG--18 LETTERS MAXIMUM": RESUME

105@ PRINT "NUMBER TOO LLARGE": RESUME

126 PRINT "DIVISION BY ZERO IN LINE 53@--ENTER NON-ZERO NUMBER
1070 RESUME 408

RUN the program. Try entering a long message; try entering zero when the program
asks for a number. Note that ERL is used in line 1000 to determine where the error
occurred so that appropriate action may be taken.

14) THEN 10406
&) THEN 1856
11) THEN 1066

i

ERR/2+1

Similar to ERL, except ERR returns a value related to the code of the error rather
than the line in which the error occurred. It is commonly used inside an error
handling routine accessed by an ON ERROR GOTO statement. See Appendix B,
“‘Error Codes.”’

ERR/2 + 1 =true error code
(true error code — 1)*2 =ERR

Sample Program

See ERL.

8/3

TRS-80 MODEL il

INP (port)

Returns a byte-value from the specified port. There are 256 ports, numbered 0-255.
For example

100 PRINTINP(50)
inputs a byte from port 50 and prints the decimal value of the byte.

You do not need to access the Z-80 ports to make full use of the TRS-80.

MEM

Returns the number of unused and unprotected bytes in memory. This function may
be used in the Immediate Mode to see how much space a resident program takes up;
or it may be used inside the program to avert OM (Out of Memory) errors by
allocating less string space, DIMensioning smaller array sizes, etc. MEM requires no
argument.

Example:

100 IFMEM < 80 THEN 900

Enter the command PRINT MEM (in the Immediate Mode) to find out the amount of
memory not being used to store programs, variables, strings, stack, or reserved for
object-files.

8/4

OUT port, value

Outputs a byte value to the specified port. OUT is not a function but a statement
complete in itself. It requires two arguments separated by a comma (no
parenthesis): the port destination and the byte value to be sent.

port and value are in the range 0 to 255.

PEEK((address)

Returns the value stored at the specified byte address (in decimal form). To use this
function, you’ll need to refer to two sections of the Appendix: the Memory Map (so
you’ll know where to PEEK) and the Table of Function ASCI1 and Graphics Codes
(so you’ll know what the values represent).

If you’re using PEEK to examine object files, you’ll also need a microprocessor
instruction set manual (one is included with the TRS-80 Editor/Assembler
Instruction Manual).

PEEK is valuable for linking machine language routines with Model Il BASIC
programs. The machine language routine can store information in a certain memory
location, and PEEK may be used inside your BASIC program to retrieve the
information. For example,

A=PEEK (17999)
returns the value stored at location 17999 and assigns that value to the variable A.

Peek may also be used to retrieve information stored with a POKE statement. Using
PEEK and POKE allows you to set up very compact, byte-oriented storage systems.
Refer to the Memory Map in the Appendix to determine the appropriate locations
for this type of storage. See POKE, USR.

POKE address, value

Loads a value into a specified memory location. POKE is not a function but a
statement complete in itself. It requires two arguments: a byte address (in decimal
form) and a value. The value must be between 0 and 255 inclusive. Refer to the
Memory Map in the Appendix to see which addresses you’d like to POKE.

To POKE (or PEEK) an address above 32767, use the following formula: — 1 *
(65536-desired address) = POKE OR PEEK address. For example, to POKE into
address 32769, use POKE — 32767, value.

8/5

- TRS-80 MODEL il

Since the Video Display is memory-mapped, you can output to the Display directly
by POKEing ASCIi data into Video RAM. Video RAM is from 15360 to 16383.

Example:
18 CLs
28 OFOR M o= 153&3 TO 1&BED
E My 191
il

B G0OTO BE

RUN the program to see how fast the screen is *‘painted’” white.

Since POKE can be used to store information anywhere in memory, it is very
important when we do our graphics to stay in the range for display locations. If we
POKE outside this range, we may store the byte in a critical place. We could be
POKEing into our program, or even in worse places like the stack. Indiscriminate
POKEing can be disastrous. You might have to reset or power off and start over
again. Unless you know where you are POKEing — don’t.

See PEEK, USR, SET, and CHRS$ for background material. Also see the Owners
Section for examples on special uses of POKE.

POS(x)

Returns a number from 0 to 63 indicating the current cursor position on the Display.
Requires a ““dummy argument’’ (any numeric expression).

100 PRINT TAB(40); POS(0)

prints 40 at position 40. (Note that a blank is inserted before the *“4’’ to
accommodate the sign; therefore the ‘4"’ is actually at position 41.) The *0’’ in
‘POS(0)’’ is the dummy argument.

8/6

USR (x)

This function lets you call a machine-language subroutine and then continue
execution of your BASIC program.

““Machine language’’ is the low-level language used internally by your Computer.
It consists of Z-80 microprocessor instructions. Machine-language subroutines are
useful for special applications (things you can’t do in BASIC) and simply because
they can do things very fast (like white-out the Display).

Writing such routines requires familiarity with assembly-language programming
and with the Z-80 instruction set. For more information on this subject, see the
Radio Shack book, TRS-80 Assembly-Language Programming, by William Barden,
Jr., and the instruction manual for Radio Shack’s EDITOR-ASSEMBLER (26-2002).

Getting the USR routine into memory

1. Youshould first reserve the area in high memory where the routine will be
located. This is done immediately after power-up by answering the MEMORY
SIZE? question with the address preceding the start address of your USR
routine. For example, if your routine starts at 32700, then type 32699 in
response to MEMORY SIZE?.

2. Thenload the routine into memory.

A. Ifitis stored on tape in the SYSTEM format (created with
EDITOR-ASSEMBLER), you must load it via the SYSTEM command, as
described in Chapter 2. After the tape has loaded press to return to
the BASIC immediate mode.

B. Ifitisa short routine, you may simply want to POKE it into high memory.

Telling BASIC where the USR routine starts

Before you can make the USR call, you have to tell BASIC the entry address to the
routine. Simply POKE the two-byte address into memory locations 16526-16527:
least significant byte (LSB) into 16526, most significant byte (MSB) into 16527.

For example, if the entry point is at 32700:
32700 decimal = 7FBC hexadecimal
LSB = BChexadecimal = 188 decimal
MSB = 7F hexadecimal = 127 decimal
So use the statements:
POKE 16526, 188
POKE 16527, 127
to tell BASIC that the USR routine entry is at 32700.

8/7

TRS-80 MODEL Il

Making the USR call

At the point in your BASIC program where you want to call the subroutine, insert a
statement like

X = USR(N)
where N can be an expression and must have a value between — 32768 and
+32767 inclusive. This argument, N, can be used to pass a value to your routine
(see below) or you can simply consider it a dummy argument and not use it at all.

When BASIC encounters your X = USR(N) statement, it will branch to the address
stored at 16526-16527. At the point in your USR routine where you want to return
to the BASIC program, insert a simple RET instruction — unless you want to return a
value to BASIC, in which case, see below.

Passing an argument to the USR routine

If you want to pass the USR(N) argument to your routine, then include the following
CALL instruction at the beginning of your USR routine.:

CALLOA7FH
This loads the argument N into the HL register pair as a two-byte signed integer.

Returning an argument from the USR routine

Toreturn an integer value to the USR(N) function, load the value (a two-byte signed
integer) into HL and place the following jump instruction at the end of your routine:
JP @A9AH

Control will pass back to your program, and the integer in HL will replace USR(N).
For example, if the call was
X=USR(N)

Then X will be given the value in HL.
USR routines are automatically allocated up to 8 stack levels or 16 bytes (a high and
low memory byte for each stack level). If you need more stack space, you can save

the BASIC stack pointer and set up your own stack. See SYSTEM, PEEK, and POKE.
Also see the Technical Information Chapter in the Owners Section.

8/8

VARPTR (variable name)

Returns an address-value which will help you locate where the variable name and
its value are stored in memory. If the variable you specify has not been assigned a
value, an FC error will occur when this function is called.

If VARPTR(integer variable) returns address K:
Address K contains the least significant byte (LSB) of 2-byte integer.
Address K + 1 contains the most significant byte (MSB) of integer.

You can display these bytes (two’s complement decimal representation) by
executing a PRINT PEEK (K) and a PRINT PEEK (K +1).

If VARPTR(single precision variable) returns address K:
(K)* =LSBofvalue
(K+1) = Next mostsignificant byte (Next MSB)
(K +2) = MSB with hidden (implied) leading one. Most significant
bit is the sign of the number
(K +3) = exponent of value excess 128 (128 is added to the exponent).

If VARPTR(double precision variable) returns K:
(K) = LSB of value
(K+1) = NextMSB
(K+...)=NextMSB
(K +6) = MsB with hidden (implied) leading one. Most significant
bit is the sign of the number.
(K+7) = exponent of value excess 128 (128 is added to the exponent).

For single and double precision values, the number is stored in normalized
exponential form, so that a decimal is assumed before the MSB. 128 is added to the
exponent. Furthermore, the high bit of MSB is used as a sign bit. It is set to 0 if the
number is positive or to 1 if the number is negative. See examples below.

You can display these bytes by executing the appropriate PRINT PEEK(x) where x =
the address you want displayed. Remember, the result will be the decimal
representation of byte, with bit 7 (MSB) used as a sign bit. The number will be in
normalized exponential form with the decimal assumed before the MSB. 128 is
added to the exponent,

If VARPTR(string variable) returns K:

K = length of string

(K+1) = LSBof string value starting address
(K+2) = MSB of string value starting address
* (K) signifies ‘‘contents of address K”’

The address will probably be in high RAM where string storage space has been set
aside. But, if your string variable is a constant (a string literal), then it will point to
the area of memory where the program line with the constant is stored, in the
program buffer area. Thus, program statements like A$ = *HELLO’’ do not use string
storage space.

8/9

' TRS-80 MODEL il
N T T T S L O]

For all of the above variables, addresses (K — 1) and (K — 2) will store the TRS-80
Character Code for the variable name. Address (K — 3) will contain a descriptor code
that tells the Computer what the variable type is. Integer is 02; single precision is
04; double precision is 08; and string is 03.

VARPTR(array variable) will return the address for the first byte of that element in
the array. The element will consist of 2 bytes if it is an integer array; 3 bytes if it is a
string array; 4 bytes if it is a single precision array; and 8 bytes if it is a double
precision array.

The first element in the array is preceded by:

1. A sequence of two bytes per dimension, each two-byte pair indicating the
“‘depth’’ of each respective dimension.

A single byte indicating the total number of dimensions in the array.

A two-byte pair indicating the total number of elements in the array.

A two-byte pair containing the ASCII-coded array name.

A one-byte type-descriptor (02 = Integer, 03 = String, 04 = Single-Precision,
08 = Double-Precision).

LAEWLD

Item (1) immediately precedes the first element, Item (2) precedes Item (1),
and so on.

The elements of the array are stored sequentially with the first dimension-subscripts
varying ‘‘fastest’’, then the second, etc.

Examples:

A! = 2 will be stored as follows
2 = 10Binary, represented as .1E2 = .1x 2?
Soexponentof Ais 128 + 2 = 130 (called excess 128)

MSB of A is 10000000;
however, the high bit is changed to zero since the value is positive (called hidden or
implied leading one).
So Alis stored as
Exponent (K + 3) MSB (K +2) Next MSB (K +1) LSB (K)
130 0 0 0
Al'= — 5 will be stored as
Exponent (K + 3) MSB (K +2) Next MSB (K+1) LSB (K)
128 128 0 0
A!'=7will be stored as
Exponent (K + 3) MSB (K +2) Next MSB (K+1) LSB (K)
131 96 0 0
Al=~T7:
Exponent (K +3) MSB (K +2) Next MSB (K+1) LSB (K)
131 224 0 0

Zero is simply stored as a zero-exponent. The other bytes are insignificant.

o i i b e e
8/10

9/Editing

You have probably found it is very time consuming to retype long program lines,
simply because of a typo, or maybe just to make a small change.

Model Ill editing features eliminate much of this extra work. In fact, it’s so easy to
alter program lines, you’ll probably want to experiment with multi-statement lines,
complex expressions, eic.

Commands, subcommands, and special function keys described in this chapter:

EDIT () n@)
ENTER XD n()
n(SPACEBAR @ n®e
n = ®) e
SHIFD (D E)

@

D
EDIT line number

This command puts you in the Edit Mode. Y ou must specify which line you wish to
edit, in one of two ways:

EDIT line-number Lets you edit the specified line.
If line number is not in use,

or an FC error occurs

EDIT. Lets you edit the current pro-

gram line — last line entered or
altered or in which an error has
occurred.

For example, type in and (ENTER) the following line:

100FOR1 = ITO10STEP.5:PRINTI,1 [2,1 [3:NEXT
This line will be used in exercising all the Edit subcommands described below.
Now type EDIT 100 and hit (ENTER). The Computer will display:

100m

You are now in the Edit Mode and may begin editing line 100.

9/1

TRS-80 MODEL Ili
e e

NOTE: EDITing a program line automatically clears all variable values and
eliminates pending FOR/NEXT and GOSUB operations. If BASIC encounters a syntax
error during program execution, it will automatically put you in the EDIT mode.
Before EDITing the line, you may want to examine current variable values. In this
case, you must type Q as your first EDIT command. This will return you to the
command mode, where you may examine variable values. Any other EDIT
command (typing E, pressing ENTER, etc.) will clear out all variables.

ENTER) key

Hitting (ENTER) while in the Edit Mode causes the Computer to record all the
changes you’ve made (if any) in the current line, and returns you to the Command
Mode.

n(SPACEBAR

In the Edit Mode, hitting the Space-bar moves the cursor over one space to the right
and displays any character stored in the preceding position. For example, using line
100 entered above, put the Computer in the Edit Mode so the Display shows:

100m

Now hit the Space-Bar. The cursor will move over one space, and the first character
of the program line will be displayed. If this character was a blank, then a blank will
be displayed. Hit the Space-Bar until you reach the first non-blank character:

100Fm

is displayed. To move over more than one space at a time, hit the desired number of
spaces first, and then hit the space-bar. For example, type 5 and hit Space-bar, and
the display will show something like this (may vary depending on how many blanks
youinseited in the line):

100FOR ==

Now type 8 and hit the Space-bar. The cursor will move over 8 spaces to the right,
and 8 more characters will be displayed.

9/2

n

Moves the cursor to the left by n spaces. If no number # is specified, the cursor
moves back one space. When the cursor moves to the left, all characters in its
‘‘path’’ are erased from the display, but they are not deleted from the program
line. Using this in conjunction with D or K or C can give misleading Video Displays
of your program lines. So, be careful using it! For example, assuming you’ve used
nSpace-Bar so that the Display shows:

100FORI1=1TO 10m
type 8 and hit the key. The display will show something like this:

100FORI=& (will vary depending on number of blanks in
your line 100)

SHIFT

Hitting SHIFT and(Dkeys together effects an escape from any of the Insert
subcommands: X, I and H. After escaping from an Insert subcommand, you’ll still
be in the Edit Mode, and the cursor will remain in its current position. (Hitting
(ENTER) is another way to exit these Insert subcommands).

L (List Line)

When the Computer is in the Edit Mode, and is not currently executing one of the
subcommands below, hitting L causes the remainder of the program line to be
displayed. The cursor drops down to the next line of the Display, reprints the
current line number, and moves to the first position of the line. For example, when
the Display shows

100@
hit L (without hitting (ENTER) key) and line 100 will be displayed:

100FOR1=1TO10STEP.5:PRINTI | [2,1 [3:NEXT
100m

This lets you look at the line in its current form while you’re doing the editing.

9/3

TRS-80 MODEL il
e e R e

X (Extend Line)

Causes the rest of the current line to be displayed, moves cursor to end of line, and
puts Computer in the Insert subcommand mode so you can add material to the end
of the line. For example, using line 100, when the Display shows

100m

hit X (without hitting (ENTER))and the entire line will be displayed; notice that the
cursor now follows the last character on the line:

100FORI=1TO10STEP.5:PRINTI, 1 [2,] [3:NEXT=

We can now add another statement to the line, or delete material from the line by
using the (XD key. For example, type :PRINT*‘DONE’’ at the end of the line. Now hit
ENTER). If you now type LIST 100, the Display should show something like this:

100FOR1=1TO10STEP .5:PRINT 1,1[2, 1 [3:NEXT:PRINT “DONE”

I (Insert)

Allows you to insert material beginning at the current cursor position on the line.
(Hitting (I) will actually delete material from the line in this mode.) For example,
type and (ENTER) the EDIT 100 command, then use the Space Bar to move over to the
decimal point in line 100. The Display will show:

100FORI=1TO10STEP .&

Suppose you want to change the increment from .5 to .25. Hit the 1 key (don’t hit
ENTER)) and the Computer will now let you insert material at the current position.
Now hit 2 so the Display shows:

100FORI=1TO10STEP 2m

You’ve made the necessary change, so hit SHIFT) () to escape from the Insert
Subcommand. Now hit L key to display remainder of line and move cursor back to
the beginning of the line:

100FORI=1TO10STEP.25:PRINTI, I [2,! [3:NEXT:PRINT “DONE”
100m

You can also exit the Insert subcommand and save all changes by hitting (ENTER) .
This will return you to Command mode.

9/4

A (Cancel and Start Again)

Moves the cursor back to the beginning of the program line and cancels editing
changes already made. For example, if you have added, deleted, or changed
something in a line, and you wish to go back to the beginning of the line and cancel
the changes already made: first hit SHIFT(®) (to escape from any subcommand you
may be executing); then hit A. (The cursor will drop down to the next line, display
the line number and move to the first program character.)

E (Exit)

Causes Computer to end editing and save all changes made. You must be in Edit
Mode, not executing any subcommand, when you hit E to end editing.

Q (Quit)

Tells Computer to end editing and cancel all changes made in the current editing
session. If you’ve decided not to change the line, type Q to cancel changes and leave
Edit Mode.

H (Hack)

Tells Computer to delete remainder of line and lets you insert material at the current
cursor position. Hitting (H) will actually delete a character from the line in this
mode. For example, using line 100 listed above, enter the Edit Mode and space
over to the last statement, PRINT*‘DONE’’. Suppose you wish to delete this statement
and insert an END statement. Display will show:

100FORI=1TO10STEP .25:PRINTI,I [2,] [3:NEXT :m
Now type H and then type END. Hit key. List the line:

100FORI=1TO10STEP.25:PRINTI, | [2,1 [3:NEXT:END
should be displayed.

9/5

TR 80 MODEL Il ——

nD (Delete)

Tells Computer to delete the specified number n characters to the right of the
cursor. The deleted characters will be enclosed in exclamation marks to show you
which characters were affected. For example, using line 100, space over to the
PRINT command statement:

100FORI=1TO10STEP .25:m

Now type 19D. This tells the Computer to delete 19 characters to the right of the
cursor. The display should show something like this:

100FORI=1TO10STEP.25:!PRINTI, | [2,] [3:!m

When you list the complete line, you’ll see that the PRINT statement has been
deleted.

nC (Change)

Tells the Computer to let you change the specified number of characters beginning
at the current cursor position. If you type C without a preceding number, the
Computer assumes you want to change one character. When you have entered n
number of characters, the Computer returns you to the Edit Mode (so you’re not in
the nC Subcommand). For example, using line 100, suppose you want to change
the final value of the FOR-NEXT loop, from ‘10"’ to *“15°". In the Edit Mode, space
over to just before the ““0’” in <“10”’.

100FORI=1TO 1m

Now type C. Computer will assume you want to change just one character. Type 5,
then hit L. When you list the line, you’ll see that the change has been made.

100FOR1=1TO15STEP .25:NEXT: END
would be the current line if you’ve followed the editing sequence in this chapter.

The 8 does not work as a backspace under the C command in Edit mode. Instead, it
replaces the character you want to change with a backspace. So it should not be
used. If you make a mistake while typing in a change, Edit the line again to correct
it, instead of using .

9/6

nSc (Search)

Tells the Computer to search for the nth occurrence of the character ¢, and move the
cursor to that position. If you don’t specify a value for , the Computer will search
for the first occurrence of the specified character. If character c is not found, cursor
goes to the end of the line. Note: The Computer only searches through characters to
the right of the cursor.

For example, using the current form of line 100, type EDIT 100 ((ENTER)) and then
hit 2S: . This tells the Computer to search for the second occurrence of the colon
character. Display should show:

100FORI=1TO15STEP .25:NEXT=

You may now execute one of the subcommands beginning at the current cursor
position. For example, suppose you want to add the counter variable after the NEXT
statement. Type I to enter the Insert subcommand, then type the variable name, I.
That’s all you want to insert, so hit SHIFT (Dto escape from the Insert subcommand.
The next time you list the line, it should appear as:

100FOR|1=1TO15STEP .25:NEXTI:END

nKc (Kill)

Tells the Computer to delete all characters up to the nth occurrence of character c,
and move the cursor to that position. For example, using the current version of line
100, suppose we want to delete the entire line up to the END statement. Type EDIT
100 (), and then type 2K:. This tells the Computer to delete all characters up
to the 2nd occurrence of the colon. Display should show:

100!IFORI=1TO15STEP .25:NEXT I!'m

The second colon still needs to be deleted, so type D. The Display will now show:
100!IFORI=1TO15STEP .25 :NEXT I!!!!=m

Now hit and type LIST 100 ().

Line 100 should look something like this:
100 END

9/7

! Section

Appendi

_ APPENDIX

A /Model ITI Summary

Special Characters and Abbreviations

Command
Mode

ENTER
S
SHIFD®

®

SHIFD®
CLEAR

Execute
Mode

SHIFD@
BREAK
ENTER

Abbreviations

?

!

Function

Return carriage and interpret command

Cursor backspace and delete last character typed
Cursor to beginning of line; erase line

Linefeed

Statement delimiter; use between statements
on same logical line

Move cursor to next tab stop. Tab stops are at
positions 0, 8, 16,24, 32,48, and 56.

Convert display to 32 characters per line

Clear Display and convert to 64 characters per line

Function
Pause in execution; freeze display during LIST
Stop execution

Interpret data entered from Keyboard with
INPUT statement

Function
Use in place of PRINT.
Use in place of :REM

“‘current line’’; use in place of line number with
LIST, EDIT, etc.

To output a control character, press SHIFT) then (D); while holding down both keys,
press the key for which a control character is desired. For example, to key a control
—Z press:

SHIFD®(D)

A

TRS-80 MODEL il

Type Declaration Characters

Character Type
$ String
% Integer

! Single-Precision
Double-Precision

D Double-Precision
(exponential notation)

E Single-Precision
(exponential notation)

Arithmetic Operators

Examples
A$,77%

A1%, SUM%

Bl NI!

A#,1/3#
1.23456789D-12

1.23456E + 30

+ add
- subtract
* multiply
/ divide
[exponentiate (e.g., 2[3 = 8) Press (@) to generate “‘[*’.
String Operator

+ concatenate (string together)

Relational Operators

Symbol in numeric expressions
< isless than

> is greater than

= isequal to

<=o0o=< is less than or equal to
>=or=> is greater than or equal to
<>or>< does not equal

A2

((21! + 11211 = ‘42211

in string expressions

precedes

follows

equals

precedes or equals
follows or equals
does not equal

Section 2
Page

1/13
1/13
1/12
112
1/12

1/12

Section 2
Page

1/19
1/19
1/19
1/19

1/19

Section 2
Page

1/22

Section 2
Page

1/23
1/23
1/23
1/23
1/23
1/23

Order of Operations

[or 4 (Exponentiation) Press (}) to enter this character.

— (Negation)

*/

¥, -

Relational operators
NOT

AND

OR

Precedence order is from left to right for operators on the same level

Commands
Command/Function

AUTO mm, nn
Turn on automatic line
numbering beginning
with mm, using
increment of nn.

CLEAR
Set numeric variables
to zero, strings to null.

CLLEARRN
Same as CLEAR but also

sets aside n bytes for strings.

CLOAD
Load a BASIC
program from tape

CLOAD?
Verifies BASIC
program on tape
to one in memory

CONT
Continue after BREAK or
STOP in execution.

Examples

AUTO
AUTO 10
AUTO5,5
AUTO.,10

CLEAR

CLEAR 500

CLEAR MEM/4

CLOAD"A”

CLOAD?“A”

CONT

APPENDIX |
R TN

Section 2

Page
1/26
1/26
1/26
1/26
1/26
1/26
1726
1/26
1/26

Section 2
Page

2/1

2/2

2/2

2/3

2/3

A/3

CSAVE
Save a BASIC
program on tape

DELETE mm-nn
Delete program line from
line mm to line nn.

EDIT mm
Enter Edit Mode for line
mm. See Edit Mode Sub-
commands below.

LIST mm-nn
List all program lines from
mmto nn.

LLIST mm-nn
Lists all program
lines from mm to
nnon the line
printer.

NEW
Delete entire program and
reset all variables, pointers
etc.

RUN mm
Execute program beginning
at lowest numbered line or
mm if specified.

SYSTEM '
Enter Monitor Mode for

loading of machine-language

file from cassette.

TROFF
Turn off Trace

TRON
Turn on Trace

A/4

TRS-80 MODEL Il
R o R Eaiee

CSAVE"“A”

DELETE 100
DELETE 10-50
DELETE.

EDIT 100
EDIT.

LIST

LIST 30-60
LIST 30-
LIST-90
LIST.

LLIST
LLIST 30-60

NEW

RUN
RUN 55

SYSTEM

TROFF

TRON

2/3

2/4

2/4

2/4

2/5

2/5

2/6

2/6

2/7

2/7

APPENDIX
[

Edit Mode Subcommands and Functions

Sub-
Command

ENTER
SHIFD D
n(SPACEBAR

5 808 B 8568

<

Function

End editing and return to Command Mode.

Escape from X, I, and H subcommands and remain in Edit Mode.

Move cursor # spaces to right.

Move cursor n spaces to left.

List remainder of program line and return to beginning of line.

List remainder of program line, move cursor to end of line,
and start Insert subcommand.

Insert the following sequence of characters at current cursor
position; use Escape to exit this subcommand.

Cancel changes and return cursor to beginning of line
End editing, save all changes and return to Command Mode.

End editing, cancel all changes made and return to
Command Mode.

Delete remainder of line and insert following sequence of
characters; use Escape to exit this subcommand.

Delete specified number of characters n beginning at current
cursor position.

Change (or replace) the specified number of characters n
using the next n characters entered.

Move cursor to nth occurrence of character ¢, counting
from current cursor position.

Delete all characters from current cursor position up to nth
occurrence of character ¢, counting from current cursor
position.

Section 2

Page
9/2
9/3
9/2
9/3
9/3
9/4

9/4

9/5
9/5
9/5

9/5

9/6

9/6

9/7

9/7

A/5

Input/Output Statements
Statement/Function

PRINT exp*
Output to Display the value of
exp. Exp may be a numeric
or string expression or

constant, or a list of such items.

Comma serves as a PRINT
modifier. Causes cursor to
advance to next print zone.

Semi-colon serves as a PRINT
modifier. Inserts a space
after a numeric item in PRINT
list. Inserts no space after a
string item. Atend of PRINT
list, suppresses the automatic
carriage return.

PRINT@n
PRINT modifier; begin
PRINTing at specified
display position n.

PRINTTAB n
Print modifier: moves cursor
to specified Display position
n (expression).

PRINT USING string,exp
PRINT format specifier;
output exp in form specified
by string field (see below).

INPUT “‘message’’ ;variable
Print message (if any)
and await input from
Keyboard.

LPRINT
Output to line printer.

PRINT # — 1
Output to Cassette.

TRS-80 MODEL il
S

Examples

PRINT A$
PRINTX+3
PRINT“D="D

PRINT 1,2,3,4
PRINT “1”,“2"
PRINT1,,2

PRINT X;” = ANSWER"
PRINT X;Y;Z
PRINT “ANSWER IS";

PRINT @ 540, “CENTER”
PRINT @ N +3,X*3

PRINT TAB(N) N

PRINT USING A$;X
PRINTUSING “#.#",Y+2Z

INPUT“ENTER NAME";A$
INPUT*VALUE"; X
INPUT“ENTERNUMBERS” ;XY
INPUTA,B,C,D$

LPRINT A$

PRINT # -1,A,B,C,D$

*exp may be a string of numeric constant or variable, or a list of such items.

]

A/6

Section 2

Page

3/

32

33

3/4

3/8

3/12

3/12

INPUT#—1

Input from Cassette.

DATA item list

Hold data for access by DATA22,33,11,1.2345

READ statement. DATA“HALL", “SMITH", “DOE”
READ variable list

Assign value(s) to the READ A,A1,A2,A3

specified variable(s), starting READ A$,B%,C$,D

with current DATA element.
RESTORE

Reset DATA pointer to first RESTORE

item in first DATA statement.

APPENDIX

INPUT #-1,A,B,C,D$

Field Specifiers for PRINT USING statements

Numeric
Character

#

*%k

$$

**$

[l DOB®

Function

Numeric field (one digit
digit per #).

Decimal point position.

Print leading or trailing signs
(plus for positive numbers,
minus for negative numbers).

Print trailing sign only if
value printed is negative.

Fill leading blanks with
asterisk.

Place dollar sign immediately
to left of leading digit.

Dollar sign to left of leading
digit and fill leading blanks
with asterisks.

Exponential format, with one
significant digit to left of
decimal. Press @ to

input this character.

Example
###

HH#H

+ # #H#H#
#.##H#+

HH#H HH# -

REHHS HH

SS##A#HF HH

ESHAHH HH

#. ##[[l

3/13

3/10

3/10 .

3/11

Section 2
Page
3/4

3/4
3/5

3/5

3/4

3/4

3/4

3/4

A7

TRS-80 MODEL Il
R N e S

#HHHHHH

, Prints out number with
commas, as in 1,356,000
! Single character. !
YospacesPo String with length equal to 0%
2 plus number of spaces
between % symbols.
Program Statements
Statement/Function Examples
(Type Definition)
DEFDBL letter list or range
Define as double-precision all DEFDBLJ
variables beginning with DEFDBLX,Y,A
specified letter, letters or DEFDBLA-E,J
range of letters.
DEFINT letter list or range
Define as integer all variables DEFINTA
beginning with specified letter, DEFINTC,E,G
letters or range of letters. DEFINT A-K
DEFSNG letter list or range
Define as single-precision all DEFSNG L
variables beginning with DEFSNGA-L,Z

specified letter, letters or
range of letters

DEFSTR letter list or range

Define as string all
variables beginning with
the specified letter, letters,
orrange of letters.

(Assignment and Allocation)

CLEAR n
Set aside specified number
of bytes n for string storage.
Clears value and type of all
variables.

A/8

DEFSNG P,R,A-K

DEFSTRA-J

CLEAR750
CLEAR MEM/10
CLEARO

3/4

3/5
3/5

Section 2
Page

4/3

4/2

4/2

4/3

4/4

DIM array(dim#1,...,dim#k)
Allocate storage for
k-dimensional array with the
specified size per dimension:
dim #1, dim#2,..., etc. DIM
may be followed by a list of
arrays separated by commas.

LET variable = expression
Assign value of expression to
variable.LET is optional in
LEVELIIBASIC.

(Sequence of Execution)

END
End execution, return to
Command Mode.

STOP
Stop execution, print Break
message with current line
number. User may continue
with CONT.

GOTO line-number

Branch to specified line-number.

GOSUB line-number
Branch to sub-routine beginning
at line-number.

RETURN
Branch to statement following
last-executed GOSUB.

ON exp GOTO line#1,...,line#k
Evaluate expression; if
INT (exp) equals one of
the numbers 1 through &,
branch to the appropriate
line number. Otherwise go
to next statement.

ON exp GOSUB line#1,...,line#k
Same as ON...GOTO except
branch is sub-routine beginning
atline#1, line#2, ..., or
line#k, depending on exp.

APPENDIX
S R s i e e e

DIMA(2,3)
DIMA1(15), A2(15)
DIMB(X +2),C(J,K)
DIMT(3,3,5)

LET A$="CHARLIE”
LETB1=C1
LETA%=1#

99 END

100 STOP

GOTO 100

GOSUB 3000

RETURN

ONK+1GOTO 100,200,300

ONJ GOSUB 330,700

4/4

4/5

4/5

4/6

4/6

4/7

4/7

4/8

4/9

A/9

Statement/Functions

FOR var = exp TO exp STEP exp
Open a FOR-NEXT loop.
STEP is optional; if not used,
increment of one is used.

NEXT variable
Close FOR-NEXT loop.
Variable may be omitted.
To close nested loops, a
variable list may be used.
See Chapter 4.

ERROR (code)
Simulate the error specified
by code (See Error Code
Table).

ON ERROR GOTO line-number
If an error occurs in
subsequent program lines,
branch to error routine
beginning at line-number.

RESUME n
Return from error routine
to line specified by n. If n

is zero or not specified, return
to statement containing error.

If nis "NEXT", return to
statement following error-
statement.

RANDOM
Reseeds random number
generator.

REM

REMark indicator; ignore rest

of line.

A/10

. TRS-80 MODEL il
s AN

Examples Section 2
Page
FORI=1TOS50STEP 1.5 4/9

FORM% =J% TO K% — 1

NEXT 4/9
NEXT |

NEXT1,J.K

ERROR(14) 4/12
ONERROR GOTO 999 4/12
RESUME 4/3
RESUME 0

RESUME 100

RESUME NEXT

RANDOM 7/4
REMAIS ALTITUDE 4/14

APPENDIX
S T A)

(Tests — Conditional Statements)

IF exp-1 THEN statement-1
ELSE statement-2
Tests exp-1:1f True, execute IFA=0THENPRINT “ZERO" 4/14-4/15
statement-1 then jump to ELSE PRINT “NOT ZERO”
next program line (unless
statement-1 was a GOTO).

If exp-1 is False, jump
directly to ELSE statement
and execute subsequent
statements.

(Graphics Statements)

CLS
Clear Video Display CLS 8/2

RESET(x,y)
Turn off the graphics block RESET (8 +B,11) 82
with horizontal coordinate x
and vertical coordinate y,
0<=X<128and 0<=Y<48

SET (x,y)
Turn on the graphics block SET(A*2,B+C) 8/1
specified by coordinates x
andy. Same argument limits
aS RESET

(Special Statements)

POKE location, value
Load value into memory POKE 15635,34 8/5
location (both arguments in POKE 17770,A+N
decimal form)
0<=value< =255.

OUT port, value

Send value to port (both OuUT 255,10 8/5
arguments between 0 and 255 OUT55,A
inclusive)

A/11

String Functions™
Function Operation
ASC(string) Returns ASCII code of first character

CHR$(code exp)

FRE(string)

INKEY$

LEFTS$(string,n)

LEN(string)

MIDS$(string,p,n,)

RIGHTS(string,n)

in string argument.

Returns a one-character string defined
by code. If code specifies a control
function, that function is activated.

Returns amount of memory available
for string storage. Argument is a
dummy variable.

Strobes Keyboard and returns a one-
character string corresponding to key
pressed during strobe (null string if
no key is pressed).

Returns first n characters of string.

Returns length of string (zero for null
string).

Returns substring of string with length
n and starting at position p in string.

Returns last # characters of string.

STR$(numeric exp) Returns a string representation of the

STRINGS(n,char)

TIME$

VAL(string)

evaluated argument.

Returns a sequence
of n char symbols
using first character
of char.

Returns date and time.

Returns a numeric value corresponding
to a numeric-valued string.

*string may be a string variable, expression, or constant.

A2

Examples

ASC(B%)
ASC("H")

CHR$(34)
CHR$(1)

FRE(A$)

INKEY$

LEFT$(A$,1)

LEFTS$(L1$ + C$,8)
LEFT$(A$,M+L)

LEN(A$ +B$)
LEN(“HOURS”)

MID$(M$,5,2)
MID$(M$ +B$,P,L—1)

RIGHT$(NAS$,7)
RIGHT$(ABS$,M2)

STR$(1.2345)
STR$(A+B*2)

STRING$(30, “.”)
STRINGS$(25, “A”)
STRING$(5,C$)

TIMES

VAL(“1”"+A$+"." +C$)
VAL(A$ + BS)
VAL(G1$)

Section 2
Page

5/2

52

5/3

5/4

5/5

5/5

5/6

5/6

5/6

5/7

5/8
5/8

Arithmetic Functions®

Function

ABS(exp)

ATN(exp)

CDBL(exp)

CINT(exp)

COS(exp)

CSNG(exp)

EXP(exp)

FiX(exp)

INT(exp)

LOG(exp)

RND(0)

RND(exp)

SGN(exp)

Operation (unless noted otherwise,
—1.7E+38< =exp<=1.7E + 38)

Returns absolute value.

Returns arctangent in radians.

Returns double-precision representa-
tion of exp.

Returns largest integer not greater
than exp. Limits:
—32768<=exp< +32768.

Returns the cosine of exp; assumes
expisinradians.

Returns single-precision representation,
with 5/4 rounding in least significant
decimal when exp is double-precision.

Returns the natural exponential,
e€XP =EXP(exp).

Returns the integer equivalent to
truncated exp (fractional part of exp
is chopped off).

Returns largest integer not greater
than exp.

Returns natural logarithm (base e)
of exp. Limits: exp must be positive.

Returns a pseudo-random number
between 0.000001 and 0.999999
inclusive.

Returns a pseudo-random number
between | and INT(exp) inclusive.
Limits: 1< =exp<<32768.

Returns — 1 for negative exp; 0 for
zero exp; + 1 for positive exp.

*exp is any numeric-valued expression or constant.

APPENDIX

Section 2
Examples Page
ABS(L*.7) 7/1
ABS(SIN(X))
ATN(2.7) 7/1
ATN(A*3) '
CDBL(A) 7/2
CDBL(A+1/3#)
CINT(A# +B) 72
COS(2*A) 72
COS(A/57.29578)
CSNG(A#) 72
CSNG(.33"B#)
EXP(34.5) 7/3
EXP(A*B*C - 1)
FIX(A—B) 7/3
INT(A+B*C) 7/3
LOG(12.33) 7/3
LOG(A B+B)
RND(0) - 7/4
RND(40) 7/4
RND(A +B)
SGN(A*B +3) 7/4
SGN(COS(X))

A/13

Function

SIN(exp)

SQR(exp)

TAN(exp)

TRS-80 MODEL Il

Operation

Returns the sine of exp; assumes exp
is inradians.

Returns square root of exp. Limits:
exp must be non-negative.

Returns the tangent of exp; assumes
exp is inradians.

Special Functions

Function
ERL

ERR

INP(port)

MEM

PEEK(location)

POINT(x,y)

POS(0)

USR(n)

VARPTR(var)

Operation and Limits
Returns line number of current error.

Returns a value related to current error
code (if error has occurred). ERR =
(error code — 1)*2. Also: (ERR/2) + 1=
error code.

Inputs and returns the current value
from the specified port. Both argument
and result are in the range 0to 255
inclusive.

Returns total unused and unprotected
bytes in memory. Does not include
unused string storage space.

Returns value stored in the specified
memory byte. location must be a valid
memory address in decimal form (see
Memory Map in Appendix D).

Checks the graphics block specified by
horizontal coordinate x and vertical
coordinate y. If block is ‘‘on’’, returns a
True (—1);if blockis ‘‘off’’, returns a

Section 2
Page

SIN(A/B) 7/5

SIN(90/57.29578)

SQR(A*A—-B*B) 7/5

Examples

TAN(X) 7/5
TAN(X*.01745329)

Section 2
Examples Page

ERL 8/3
ERR/2 +1 8/3

INP(55) 8/4

MEM 8/4

PEEK(15370) 8/4

82

False (0). Limits: 0< =x <128;0<< =y<48.

Returns a number indicating the cur-
rent cursor position. The argument
"0”is a dummy variable.

Branches to machine language sub-
routine. See Chapter 8.

Returns the address where the specified
variable’s name, value and pointer are

POS(0) 8/4

USR(0) 8/7

VARPTR(A$) 8/9
VARPTR(N1)

stored, var must be a valid variable name.

Lot R e e e S
A4

Model ITT BASIC Reserved Words*

APPENDIX

@ ELSE LLIST RENAME
ABS END LPRINT RESET
AND EOF LOAD RESTORE
ASC ERL LOC RESUME
ATN ERR LOF RETURN
AUTO ERROR LOG RIGHTS$
CDBL EXP MEM RND
CHR$ FIELD MERGE RSET
CINT FIX MID$ RUN
CLEAR FN MKD$ SAVE
CLOCK FOR MKI$ SET
CLOSE FORMAT MKS$ SGN
CLS FRE NAME SIN
CMD FREE NEW SQR
CONT GET NEXT STEP
COoS GOSUB NOT STOP
CSNG GOTO ON STRING$
CVD IF OPEN STR$
CVvI INKEY$ OR SYSTEM
CVS INP ouT TAB
DATA INPUT PEEK TAN
DEFDBL INSTR POINT THEN
DEFFN INT POKE TIME$
DEFINT KILL POS TO
DEFSNG LEFT$ POSN TROFF
DEFUSR LET PRINT TRON
DEFSTR LSET PUT USING
DELETE LEN RANDOM USR
DIM LINE READ VAL
EDIT LIST REM VARPTR
VERIFY

*Some of these words have no function in Model III BASIC; they are reserved for
use in Disk BASIC. None of these words can be used inside a variable name. You’ll
geta syntax error if you try to use these words as variables.

A5

TRS-80 MODEL il

Program Limits and Memory Overhead

Ranges

Integers --32768 to + 32767 inclusive
Single Precision —1.701411E+38 to +1.701411E+38 inclusive
Double Precision — 1.701411834544556D+38 to + 1.701411834544556D+ 38 inclusive

String Range: Up to 255 characters
Line Numbers Allowed: 0 to 65529 inclusive

Program Line Length: Up to 255 characters (input 240, edit to 255)

Memory Overhead

Program lines require 5 bytes minimum, as follows:
Line Number — 2 bytes
Line Pointer -— 2 bytes
Carriage Return — 1 byte

In addition, each reserved word, operator, variable name, special character and
constant character requires one byte.

A/16

Dynamic (RUN-Time) Memory Allocation

Integer variables: 5 bytes each
(2 for value, 3 for variable name)

Single-precision variables: 7 bytes each
(4 for value, 3 for variable name)

Double-precision variables: 11 bytes each
(8 for value, 3 for variable name)

String variables: - 6 bytes minimum
(3 for variable name, 3 for stack and variable pointers, 1 for each character)

Array variables: 12 bytes minimum
(3 for variable name, 2 for total size, 1 for number of dimensions, 2 for size of
each dimension, and 2, 3,4 or 8 [depending on array type]
for each element in the array)

Each active FOR-NEXT loop requires 16 bytes.
Each active (non-returned) GOSUB requires 6 bytes.
Each level of parentheses requires 4 bytes plus 12 bytes for each temporary value.
General Formula for Computing Memory Requirements of Arrays
The array G (N1, N2, ..., Nk) requires the following amount of memory:
14 + (k*2) + T*{(N1 +1)*(N2+1)*...* (Nk + 1)%

where k is the number of dimensions in the array, and the value of T depends on the
array type:

Type T
Integer

Single-Precision

Double-Precision

String*

w oo & o

*In computing the actual memory requirements of string arrays, you must add the
text length of each element in the array. When the array is first dimensioned, all
elements have length 0. The string text will be stored in the string space (reserved by
the CLEAR n statement).

A7

' TRS-80 MODEL IIi
L o]

Accuracy

Single-precision calculations involving +, —, *, and/ are accurate to six significant
digits; double-precision calculations involving the same operations are accurate to
16 significant digits.

The exponentiation operator (B) (displayed as *‘[*") is single-precision.

The trigonometric and logarithmic functions are single-precision; other functions
have a precision depending on the input argument and on the function. For
example, CDBL returns a double-precision value; ABS returns a value with the same
precision as the input argument.

When converting from single- to double-precision, use the following technique to
avoid introduction of incorrect values in the extra digits of precision:

double-precision variable = VAL (STR$ (Single-precision variable))

A/18

B /Error Codes

CODE ABBREVIATION
1 NF
2 SN
3 RG
4 OD
5 FC
6 ov
7 oM
8 UL
9 BS

10 DD

11 10

12 ID

13 ™

14 oS

15 LS

16 ST

17 CN

18 NR

19 RW

20 UE

21 MO

22 FD

23 3

APPENDIX

ERROR

NEXT without FOR
Syntax error

Return without GOSUB
Out of data

[llegal function call
Overflow

Out of memory
Undefined line
Subscript out of range
Redimensioned array
Division by zero
Illegal direct

Type mismatch

Out of string space
String too long

String formula too complex
Can’tcontinue
NORESUME

RESUME without error
Unprintable error
Missing operand

Bad file data

Disk BASIC only

B/

Explanation of Error Messages

NF

SN

RG

oD

FC

oV

OM

UL

BS

DD

0

ID
™

NEXT without FOR: NEXT is used without a matching FOR statement. This
error may also occur if NEXT variable statements are reversed in a nested
loop.

Syntax Error: This usually is the result of incorrect punctuation, open
parenthesis, an illegal character or a mis-spelled command.

RETURN without GOSUB: A RETURN statement was encountered before a
matching GOSUB was executed.

Out of Data. A READ or INPUT # statement was executed with insufficient
data available. DATA statement may have been left out or all data may have
been read from tape or DATA.

[llegal Function Call: An attempt was made to execute an operation using an
illegal parameter. Examples: square root of a negative argument, negative
matrix dimension, negative or zero LOG arguments, etc. Or USR call without
first POKEing the entry point.

Overflow: The magnitude of the number input or derived is too large for the
Computer to handle. NOTE: There is no underflow error. Numbers smaller
than =1.701411E — 38 single precision or =1.701411834544556E — 38
double precision are rounded to 0. See /0 below.

Out of Memory: All available memory has been used or reserved. This may
occur with very large matrix dimensions, nested branches such as GOTO,
GOSUB, and FOR-NEXT Loops.

Undefined Line: An attempt was made to refer or branch to a non-existent
line.

Subscript out of Range: An attempt was made to assign a matrix element
with a subscript beyond the DIMensioned range.

Redimensioned Array: An attempt was made to DIMension a matrix which
had previously been dimensioned by DIM or by default statements. Itis a
good idea to put all dimension statements at the beginning of a program.

Division by Zero: An attempt was made to use a value of zero in the
denominator. NOTE: If you can’t find an obvious division by zero check for
division by numbers smaller than allowable ranges. See OV above and
RANGES page A/17.

- Illegal Direct: The use of INPUT as a direct command.

Type Mismatch: An attempt was made to assign a non-string variable to a
string or vice-versa.

B/2

0S
LS

ST

CN

NR

RW

UE

MO

FD

L3

Out of String Space: The amount of string space allocated was exceeded.

String Too Long: A string variable was assigned a string value which
exceeded 255 characters in length.

String Formula Too Complex: A string operation was too complex to
handle. Break up the operation into shorter steps.

Can’t Continue: A CONT was issued at a point where no continuable program
exists, e.g., after program was ENDed or EDITed.

No RESUME: End of program reached in error-trapping mode.

RESUME without ERROR: A RESUME was encountered before ON ERROR GOTO
was executed.

Unprintable Error: An attempt was made to generate an error using an
ERROR statement with an invalid code.

Missing Operand: An operation was attempted without providing one of the
required operands.

Bad File Data: Data input from an external source (i.¢., tape) was not correct
or was in improper sequence, etc.

DISK BASIC only: An attempt was made to use a statement, function or
command which is available only with the Disk System.

B/3

APPENDIX

C / TrRS-80 Model III Character
Codes

Text is represented in the Computer by codes. For example, the letter"A” is
represented by the code 65. Control functions and graphics are also represented
by codes. The character codes range from zero through 255.

Codes zero through 31 usually represent certain control functions. For example,
code 13 represents a carriage return or ‘‘end of line’”. However, in the Model 111,
these same codes also represent 32 special display characters. For this application,
they must be loaded (POKEd) into video RAM, not PRINTed.

Codes 32 through 127 represent the text characters— all those letters, numbers
and other characters that are commonly used to represent textual information. The
Model III text characters conform to the American National Standard Code for
Information Interchange.

Codes 128 through 191, when output to the video display, represent 64 graphics
characters.

Codes 192 through 255, when output to the video display, represent either space
compression codes or special characters, as determined by software.

Many of the codes may be input from the keyboard; all of them may be stored in a
string and output to any device. For example, to output a code 31 to the video
display, use a statement like this:

PRINT CHR$(31)

For further details, see Using the Video Display in Section One of this manual.

Note: In the following table, vidram refers to Video RAM, i.e., addresses
from 15360 to 16383.

Ccn

T

In the following table, we summarize the keyboard and video display control

characters.
Code Video Display
Dec. Hex.|Keyboard PRINT CHRS$ (code) POKE vidram, code*
00 No effect
01 No effect
(SHIFD (D (A)
2 02 ® No effect
3 03 ® © No effect
4 04 ® @) No effect
5 05 ® B No effect
6 06 [GHIFD ® (F) No effect g
7 07 |GHIFD @ (6) No effect '-'g‘
8 08 | Backspace and erase g
® @ &
9 09 |& Tab(0,8,16,24, ...) @
® @ <
10 0A |® Move cursor to start of g
SHIFD @ nextline and erase line B
11 0B |SHIFD () O No effect =
12 0C No effect by
13 0D |[(ENTER Move cursor to start of next <,
SHIFD @ (D line and eraseline 2
14 OE @ D Cursoron =
15 OF ® (@ Cursor off o
16 10 ®) No effect %
17 11 ® @ No effect <
18 12 ® @® No effect &
19 13 ® No effect =
20 14 ® No effect o
21 15 ® @ Swap space compression/ =
special characters g
22 16 ® D Swap special/alternate characters n
23 17 |GHIFD @ (D Double-size characters 3
24 18 [GHIFD & Backspace without @
® O erasing
25 19 ® Advance cursor
26 1A (O)e3) Move cursor down
27 1B ® Move cursor up
28 1C ® e Move cursor to upper left corner
29 1D ® (9) Eraseline and start over
30 1E [O)O) Erasetoendofline
31 1F Erase to end of display
SHIFD @ @

*See Special Characters 0 through 31 later in this Appendix.

C/2

Code Video Display
Key-

Dec. | Hex. |board PRINT CHRS (code) | POKE vidram, code
32 20 (SPACEBAR) | b]
33 21 ! ! !
34 22 " ! "
35 23 # # #
36 24 $ $ $
37 25 % % %
38 26 & & &
39 27 ’ ’ '
40 28 (((
41 29)))
42 2A * * *
43 2B + + +
44 2C , , ,
45 2D — - —
46 2E) .

47 2F / / /
48 30 0 0 0
49 31 1 1 1
50 32 2 2 2
51 . 33 3 3 3
52 34 4 4 4
53 35 5 5 5
54 36 6 6 6
55 37 7 7 7
56 38 8 8 8
57 39 9 9 9
58 3A : : :
59 3B : ; :
60 3C < < <
61 3D = = =
62 3E > > >
63 3F ? ? ?
64 40 @ @ @
65 41 A A A
66 42 B B B
67 43 C C C
68 44 D D D

C/3

TRS-80 MODEL il

Code Video Display
Key-

Dec. | Hex. board PRINT CHRS$ (code) POKE vidram, code
69 45 E E E
70 46 F F F
71 47 G G G
72 48 H H H
73 49 [I |
74 4A J J J
75 4B K K K
76 4C L L L
77 4D M M M
78 4E N N N
79 4F 0 0] (0]
80 50 P P P
81 51 Q Q Q
82 52 R R R
83 53 S S S
84 54 T T T
85 55 U U U
86 56 \ Vv V
87 57 W W W
88 58 X X X
89 59 Y Y Y
90 5A Z Z Z
91 5B) [[
92 5C \ \
93 5D 1 |
94 5E A A
95 5F — —
96 60 h
97 61 A a a
98 62 B b b
99 63 C c c

100 64 D d d
101 65 E e e
102 66 F f f
103 67 G g g
104 68 H h h
105 69 I i i

C/a

APPENDIX

Code Video Display
Key-

Dec. | Hex.| board PRINT CHRS$ (code) POKE vidram, code
106 BA J j i
107 6B K k k
108 6C L | I
109 6D M m m
110 6E N n n
111 6F 0 0 0
112 70 P p p
113 71 Q q q
114 72 R r r
115 73 S s s
116 74 T t t
117 75 U u u
118 76 Vv v v
119 77 w w W
120 78 X X X
121 79 Y y y
122 7A z z z
123 7B { {
124 7C ' i
125 7D } }
126 7E ~ ~
127 7F + +
128 80 | Codes 128-191 output graphics characters. See the graphic

display table in this Appendix.
192 CO | Codes 192-255 output either space
: compression codes or special characters when
: used with PRINT CHR$ (code).
255 FF | They always output special characters
when used with POKE vidram, code.
See the special character table in this Appendix.

C/5

3

wy e o ey
Lo wp
e e o,
oo s W w = 2
et gt Y L] &y ko]
= e = v = =
&3 £ @ T
b e 3 L
. b = v B = b
Q?z A
s =

C/6

APPENDIX

Special Characters (0-31, 192-255)

L

o

=

12

11

10

&2

&N

e

20

P

18

17

16

o

29

28

26

25

24

199

198

197

196

195

194

193

192

206

205

204

203

202

201

200

Cr7

TRS-80 MODEL lil

214

213

212

211

209

208

222

221

220

214

217

216

231

230

229

228

227

224

239

238

236

235

=
3
&N

232

247

246

244

243

242

241

240

254

263

252

251

250

)

24

248

C/8

Radie fhaek

PAGE

TRS-80 Video Display Worksheet

TITLE

OF

PROGRAMMER

g====a====m____g====g====$====

11
717 Blal
011 b1)]-J0i1) | i 0}1

- e
o
=2

w

]

~

[s Y
S| ® e

=
=

.2

~
= o
@

&
td]

@

__________ﬂm_____.__ ________mﬂ________r

S

o

-~
S

D / Internal Codes for BASIC
Keywords

The following are the internal codes that the Computer uses to store BASIC
keywords. If you PEEK at the program buffer area (starting at address 17129 in
decimal) you will find your program stored in the following codes.

Dec.
Code

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

BASiC Keyword

FOR
RESET
SET
CLS
CMD
RANDOM
NEXT
DATA
INPUT
DIM
READ
LET
GOTO
RUN

IF
RESTORE
GOSUB
RETURN
REM
STOP
ELSE
TRON
TROFF
DEFSTR
DEFINT
DEFSNG
DEFDBL
LINE
EDIT
ERROR
RESUME
ouT
ON
OPEN
FIELD
GET
PUT
CLOSE

Dec.
Code

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

BAsiC Keyword

LOAD
MERGE
NAME
KILL
LSET
RSET
SAVE
SYSTEM
LPRINT
DEF
POKE
PRINT
CONT
LIST
LLIST
DELETE
AUTO
CLEAR
CLOAD:
CSAVE
NEW
TAB
TO

FN
USING
VARPTR
USR
ERL
ERR
STRING$
INSTR
POINT
TIME$
MEM
INKEY$
THEN
NOT
STEP

DA

Dec.
Code

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

D/2

BAsIC Keyword

TRS-80 MODEL lii

Dec.
Code

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

BASIC Keyword

Cvs
CVvD
EOF
LOC
LOF
MKI$
MKS$
MKD$
CINT
CSNG
CDBL
FIX
LEN
STR$
VAL
ASC
CHR$
LEFT$
RIGHT$
MID$

APPENDIX

E / Derived Functions

Function Function Expressed in Terms of Model III BASIC Functions.
X is in radians.

SECANT SEC(X) =1/COS(X)

COSECANT CSC(X) =1/SIN(X)

COTANGENT COT(X) =1/TAN(X)

INVERSE SINE ARCSIN(X) = ATN(X/SQR(— X*X + 1))

INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

HYPERBOLIC SINE

HYPOBOLIC COSINE

HYPERBOLIC TANGENT

HYPERBOLIC SECANT

HYPERBOLIC COSECANT

HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC
SINE

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

INVERSE HYPERBOLIC
SECANT

INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

Inverse Sine

Inverse Cosine

Inverse Secant

Inverse Cosecant

Inverse Hyper. Cosine
Inverse Hyper. Tangent
Inverse Hyper. Secant
Inverse Hyper. Cosecant
Inverse Hyper. Cotangent

Certain special values
provide invalid values:

ARCCOS(X) = —ATN(X/SQR(-X*X+1))+1.5708
ARCSEC(X) = ATN(SQR(X*X — 1)) + (SGN(X) - 1)*1.5708
ARCCSC(X) = ATN(1/SQR(X*X — 1)) + (SGN(X) -~ 1)*1.5708
ARCCOT(X) = —ATN(X)+1.5708

SINH(X) = (EXP(X) - EXP(—X))/2

COSH(X) = (EXP(X)+EXP(-X))/2
TANH(X) = —EXP(—X/(EXP(X) +EXP(-X))*2+1
SECH(X) = 2/(EXP(X) + EXP(- X))

CSCH(X) = 2/(EXP(X) EXP(X))
COTH(X) = EXP(— X)(EXP(X)~ EXP(~X))*2+1

ARGSINH(X) = LOG(X+SQR(X*X + 1))
ARGCOSH(X) = LOG(X+ SQR(X*X~1))
ARGTANH(X) = LOG((1 + X)/(1 - X))/2
ARGSECH(X) = LOG((SQR(—X*X+1) +1)/X)
ARGCSCH(X) = LOG((SGN(X)*SQR(X*X + 1) + 1)/X)

ARGCOTH(X) = LOG((X+ 1)/(X —1))/2

Valid Input Ranges

-1 < X<
-1<X<1

X < — or X>1
X< —-1orX>1
X>1

XX <1
0<X<1
X<>0
X*X > 1

are mathematically undefined, but our functions may

TAN and SEC of 90 and 270 degrees
COT and CSC of 0 and 180 degrees

For example, TAN(1.5708) returns a value but TAN(90* .01745329) returns a DIVISION
BY ZERO error. 90* .01745329 = 1.5708

E/N

Other values which are not available from these functions are:

ARSCIN (-
ARCSIN (

ARCCOS
ARCCOS
ARCSEC
ARCSEC
ARCCSC

(-
{
(-
(
(-
ARCCSC (

Please note that the above information may not be exhaustive.

E/2

-Pl/2
PI/2
Pl
0

= - Pl
0

~-Pl/2
PI/2

i

o

1)
1)
1)
1
1)
1
1)
1)

TRS-80 MODEL il
R T e R

®
F / Base Conversions

DEC. HE X o B INARY DEC.
@ @A Lr bty 4@
1 @l Falralrim gt ratri] 41
= @z ralralrlrlrdr | 4
A @3 napenl 1 4%
4 @4 nananl oG L4
5 05 nappi g 45
& A L ralFlr R A R i éy
7 @7 wnnni il 47
2 e PORE 1 DG 48
v 0y peeeloel 4G
1@ @ raininlnpRaa N 5
11 OB 0000101l 5
1 BC OOER1100 o
13 @D PEED1 181 £y
14 BE: haen1i11@é T4
1% aF 1111 5
1é& 16 Ban)l ahng B éy
17 11 a1 annl =7
18 12 R Lralr v) = 8
19 13 Q0010011 -
20 14 ORB 10100 0
21 15 oepioiel o1
. 16 00010110 -
3 17 PORIB111 e
418 00011000 "
25 19 goelieel o5
26 1A Q0211010 ol
=27 1B paaliall &7
o8 1C @PB11100 o83
= iD paAalilial X
30 1E POR11110 7@
21 1F paliiil 71
& 20 aR100060 o)
33 21 100001 a1
34 ZF Q0100010 74
25 @ o@10001 1 5,
36 24 OR10DIOD S
37 5 00100101 9
38 2é phiaB1ip 78
39 27 00100111 96

HEX .

Se
=9
Y
2B
2
20
2E
=2F
3@
31
A
A3
A
)
A&
37
38
A9
3
AB
3C
A0
1
3F
4@
41
4
43
44
45
4é
47
48
49
48
4B
4G
41
4
4F

APPENDIX |
e e L e e

BINARY
AEl@ane
BRrialand
RN R R
nE1aiell
aB121 100
pal1el el
paieliie
pai@all il
@Be 1 0o
BnAa11ad6l
@1 1ee1a
a@lieell
AAl1G100
ae1aLel
geiialie
aali1e1ll
a@1l1io00
Ball1ea1
BA111310
a@11i1éd
2@a111100
P@111101
pal1i1li@
pAI11111
@1000000
ARl
7ioeedia
H1ooen1l
@B1a00100
B1oenial
Rivoniia
R
B1opiooe
hipa1anl
pipeiIal
nipeioil
B1ov11o0
Ni1B1101
a1a@111@
1031111

F/1

F2

HEX .

5
51
B2

=

77

TRS-80 MODEL Ili
N e e]

B TNARY

@1a1aoee
@Qiaiann:
Airalonia
@lalents
Rlainiea
agieipiod
@rainiie
@Blaieiis
Biml 1 oan
@aigiiend
pieiinie
pimiigil
@graliiee
Ai@liiel
@ieiilie
Bigmiiii
@1l aaaan
211oeen1
21100010
@lrieenil
pliogion
Biioaiml
alriaaiie
@riomiil
21101006
@gligionl
@lrimiaie
B1i1@1m11
21101100
21101101
wii1ai111@
#11:1111
@1l io6ee
211ienel
Aaliiee1e
211ie@11
Qiii@ien
21110101
@giii@iie
B1112111

HEX .

78
79
7h
7E
7C
7D
7E.
7K

98

9E

BINARY
21111000
@ar1i11u61
Ariiime
@iiiieid
@i11i100
@aiiiiiel
@#111111@
@1i1t1ii1il
1 2eBBnnG
lakaaanl
109a0G1e
1860661 1
10006166
inaealal
10000110
1eeelll
10001006
laoaioel
ioaaiale
ioeieil
10001100
12081181
100@111@
10021111
10010000
10610001
10010616
10010@11
lavioien
ivai1niel
12010116
iraiaill
10a11000
10011001
i@i1101@
10011811
100011100
la@11101
18311110
100111114

DEC.

1 6@
161
142
163
1é&4
165
1é&é&
167
168
169
17@
171
172
1723
174
175
176
177
178
179
180
181
183
183
184
185
1864
187
188
189
196
191
192
193
194
195
196
197
198
199

HEX .

Al
Al
AZ
A3
Ad
AD
Abs
N7
AL
AT
A
AL
AC
AD
AE
AF
BN
Bl
B
B3
B4
E.5
Bé&
B7
jates
Be
BA
BE
BC
BD
BE
B
ca

cz
C3
C4
cH

Ché
c7

B INARY

10100000
1@iaaoal
1R1a60ia
1a100a) 1)
13100166
1ai1aai1nl
1a1a@11@
1810111
10101000
18101001
181@8101@
12101811
13101100
10121101
12131118
1a191111
13110600
183110001
12110010
10110611
18110100
1a1io1@1
1@11@11@
18118111
13111000
183111061
13111210
12111011
iAa111106
11111021
i311111@
13111111
11000000
11000001
11000010
11000011
11000100
l11paa101
11000110
110600111

DiEC.

20
201
e
=03
204
205
26
i
=0

Ces
o
o7
R
e
D
CE
CF
D
D1
D
D3
Dé
D5
Dé
D7
D8
DY
DA
DE:
D
DD
DE
DF
E®
E1
Ex
e
E4
ES
Eé
E7
ES
E9
EA
EE
EC
ED
EE
EF

HEX .

APPENDIX

BINARY
11001000
11001 0a)
11001010
11p0inll
11001100
11001101
11001110
11eni1ll
1101 0ee
11l eenl
11010018
1101001 1
11010100
1iginial
11010110
11010111
11011000
11011001
11011010
11011811
11011100
11011101
1ipii1ie
11011111
11100000
11100001
11100010
11100@11

11183100
11108101

11100110

11106111
11131000

li1@ieel
11131910
1111211
11131100
11121161
11181112
11181111

F/3

F/a

HEX .

TRS-80 MODEL il
R T N S T S A A S o

BINARY

11116066

1111001
11119610
11116811
illaien
1111@1@1
11113116
111i@11d
lll1liae
lil1i@m1
ii11iei@
111i11@11
11111100
litiii1e
1111111@
1i111111

_APPENDIX

G/ Model I to Model III Program
Conversion Hints

From a language standpoint, Model III BASIC is fully compatible with Model I
Level Il BASIC. In fact, the two BASIC’s are identical, except that Model 111 BASIC
includes one more function, TIMES.

However, because of Model I1I’s many special features not available in Model I,
there are some internal differences which may require that you modify any Model |
Level Il BASIC programs you may have.

1. Fora given TRS-80 (16K, 32K or48K RAM), the amount of user memory in Model
II1is 258 bytes less than the amount in Model 1.

2. Toload aLevel Il BASIC program, you must select the Low (500 baud) cassette
speed on your Model I1I.

3. Whenrunning a Level Il BASIC program which requires all-capitals keyboard
entries, be sure to select all-caps mode. is the on/off toggle for
all-caps.

4. Unlike the Model I, Model 11 lets you interrupt a cassette, line printer, or
RS-232-C operation by holding down the key. Some of your Level II
programs may need modification to take this feature into account.

5. The video display character sets are slightly different in Model I and Model I11.
Model Il produces standard ASCII characters for codes 32 through 127; Model I
does not. In particular, there is no up arrow, down arrow, left arrow or right
arrow in the Model III character set. However, Model I has an additional set of
96 special characters from which you can probably find whatever you need. See
the table of Model Il Character Codes for details.

Radio Shack Applications Programs

For a list of which Model I programs will run on Model 111 and which won'’t, see the
Radio Shack Computer Catalog. Most Model I-only programs will be available in
Model III versions. Check at your local Radio Shack.

G

APPENDIX

H / Glossary

address A locationin memory, usually specified as a two-byte hexadecimal
number. The address range [O to FFFF] is represented in decimal as [0 to 32767]
[—32768,..., —1].

alphabetic Referring strictly to the letters A to Z.
alphanumeric Referring to the set of letters A to Z and the numerals 0-9.

argument The string or numeric quantity which is supplied to a function and is
then operated on to derive a result; this result is referred to as the value of the
function.

array An organized set of elements which can be referenced in total or
individually, using the array name and one or more subscripts. In BASIC, any
variable name can be used to name an array; and arrays can have one or more
dimensions. AR() signifies a one-dimensional array named AR; AR(,) signifies a
two-dimensional array named AR; etc.

ASCII American Standard Code for Information Interchange. This method of
coding is used to store textual data. Numeric data is typically stored in a more
compressed format.

BASIC Beginners’ All-purpose Symbolic Instruction Code.

binary Having two possible states, e.g., the binary digits 0 and 1. The binary (base
2) numbering system uses sequences of zeroes and ones to represent quantities.
This is analagous to the Computer’s internal representation of data, using electrical
values foroand 1.

bit Binary digit; the smallest unit of memory in the Computer, capable of
representing the values0and 1.

break To interrupt execution of a program. In BASIC the statement STOP causes a
break in execution, as does pressing the (BREAK) key.

buffer An areain RAM where data is accumulated for further processing.

byte The smallest addressable unit of memory in the Computer, consisting of 8
consecutive bits, and capable of representing 256 different values, e.g., decimal
values from 0 to 255.

compressed-format A method of storing information in less space than a standard
_ASCI representation would require. An integer always requires two bytes; a
single-precision number, four; a double-precision number, 8 —regardless of how
many characters are required to represent the numbers as text. String values are not
stored in compressed format; each character requires one byte.

BASIC programs in RAM are stored in compressed-format, with all BASIC keywords
stored as special one-byte codes.

R T e s]
HA

TRS-80 MODEL Il

data Information thatis passed to or output from a program. There are four types
of data:

@ Integer numbers

@ Single-precision numbers

® Double-precision numbers

@ Character-string sequences (strings)

debug To find and remove logical or syntactic etrors from a program.

decimal Capable of assuming one of ten states, e.g., the decimal digits 0,1, . . . ,9.
Decimal (base 10) numbering is the everyday system, using sequences of decimal
digits. Decimal numbers are stored in binary code in Model I1I BASIC.

default An action or value which is supplied by a program when you do not specify
an action or value to be used.

delimiter A character which marks the beginning or end of a dataitem, andisnot a
part of the data. For example, the double-quote symbol is a string delimiter to
BASIC.

device A physical part of the computer system used for data /O, e.g., keyboard,
display, or line printer.

diskette A magnetic recording medium for mass data storage.

dummy variable A variable name which is used in an expression to meet syntactic
requirements, but whose value is insignificant.

edit Tochange existing information.

entry point The address of a machine-language program or routine where
execution is to begin. This is not necessarily the same as the starting address. Entry
point is also referred to as the transfer address.

hexadecimal or hex Capable of existing in one of 16 possible states. For example,
the hexadecimal digits are 0,1,2, . . . ,9,A,B,C,D,E,F. Hexadecimal (base-16)
numbers are sequences of hexadecimal digits. Address and byte values are
frequently given in hexadecimal form. In Model III BASIC, hexadecimal constants
can be input by prefixing the constant with &H.

increment The value which is added to a counter each time one cycle of a
repetitive procedure is completed.

input To transfer data from outside the Computer (from a cassette file, keyboard,
etc.) into RAM.

kilobyte or K 1024 bytes of memory. Thus a 64K System includes 64*1024=65536
bytes of memory.

logical expression An expression which is evaluated as either TRUE (= - 1) or
FALSE (=0).

H/2

amaRENDIX

machine language The Z-80A instruction set, usually specified in hexadecimal
code. All higher-level languages must be translated into machine-language, or
interpreted by machine language, in order to be executed by the Computer.

null string A string which has a length of zero. For example, the assignment A$ = "
"makes A$ a null string.

object code Machine language derived from ‘‘source code’’, typically, from
assembly language.

octal Capable of existing in one of eight states, for example, the octal digits are 0,
1,...,7. Octal (base-8) numbers are sequences of octal digits. Address and byte
values are frequently given in octal form. Under Model I11 BASIC, an octal constant
can be input by prefixing the octal number with the symbol &O.

output To transfer data from inside the Computer’s memory to some external
‘area, e.g., adisk file or aline printer.

parameter Information supplied with acommand to specify how the command is
to operate.

prompt A character or message provided by a program to indicate that it’s ready to
accept keyboard input.

random access memory or RAM Semiconductor memory which can be addressed
directly and either read from or written to.

routine A sequence of instructions to carry out a certain function; typically, a
routine called from multiple points in a program.

statement A complete instruction in BASIC.

string Any sequence of characters which must be examined verbatim for meaning:
in other words, the string does not correspond to a quantity. For example, the
number 1234 represents the same quantity as 1000+234, but the string "1234" does not.
(String addition is actually concatenation, or stringing-together, so that: "1234"
equals "1” +"2" + "3" +"4").

syntax The ‘‘grammatical’’ requirements for acommand or statement. Syntax
generally refers to punctuation and ordering of elements within a statement.

transfer address See entry point.

H/3

APPENDIX
D T ey

I/ Rs-232-c Technical Information

Transmission of Digital Data

The transfer of digital data over relatively long distances is generally accomplished
by sending data in serial form using a single twisted wire pair to connect the
transmitting and receiving devices. One of two general transmission techniques is
commonly used, asynchronous or synchronous. The transmission technique used
in the Radio Shack system is asynchronous-bit-serial. Since we don’t use the
synchronous technique, we’ll not mention it again. Asynchronous transmission
does not require a synchronizing clock to be transmitted with the data and, the
characters need not be contiguous. This means that gaps of varying lengths may be
present between transmission of individual characters.

The bits which comprise a data character (generally from five to eight bits in length)
and synchronizing start and stop elements are added to each character as shown
below. The start element is a single logic zero (0) data bit that is added to the
front

character. The stop element is maintained until the start element of the next
character is transmitted. There is no upper limit to the length of the stop element.
However, there is a lower limit that depends on system characteristics. Typical
lower limits are 1.0, 1.42 or 2.0 data-bit intervals (although most modern systems use
1.0 0or 2.0 stop bits). The negative-going transition of the start element defines the
location of the data bits in the character being transmitted. A clock source at the
receiver is reset by this transition and is used to locate the center of each data bit.

There are several good reasons for using the asynchronous data transmission
system. A clock signal does not need to be transmitted with the data, thus,
equipment is simpler. Also, the characters don’t need to be sent all at one time; they
can be transmitted as they become available. This is particularly useful when
transmitting data from manual-entry input devices (e.g. akeyboard). The major
disadvantage of asynchronous transmission is that it requires a significant portion
of the communications bandwidth for start and stop elements.

The rate at which asynchronous data is transmitted is defined as the baud rate.
Baud rate is the inverse of the time duration of the shortest signal element.
Normally, this is one data bit interval. The baud rate is equal to the bit rate if one
stop bit is used; but for systems which use more than one stop bit, the baud rate does
not equal the bit rate.

STOP ELEMENT START ELEMENT

|
L] I

e S Rt
ONE 8 BIT CHARACTER ONE 8 BIT CHARACTER
STOP ELEMENT (11001000) START ELEMENT (00100000)

Asynchronous Data

i1

TRS-30 MODEL I

Asynchronous transmission over a simple twisted wire pair can be accomplished at
moderately high baud rates (10K baud or higher, depending on the length of wire,
type of drivers, etc.). Transmission over the telephone network is generally limited
to approximately 2K baud and a modem is required to convert the data pulses to
tones that can be transmitted through the telephone network. Radio Shack’s
Telephone Interface is the ideal modem for this RS-232-C Interface.

Signal Conventions

The E.I.A. RS-232-C electrical specification defines voltage levels and corresponding
logic conventions associated with data and control information transmitted
between equipment. For data interchange, the signal is considered in the marking
condition when the voltage measured at the interface point is more negative than

— 3 Volts(with respect to signal ground). The signal is considered in the spacing
condition when the voltage is more positive than +3 Volts(with respect to signal
ground). The marking condition corresponds to a logic one (1) and the space
condition corresponds to a logic zero (0). For timing and control interchange
circuits, the function is considered to be ‘‘on’” when the voltage on the interchange
circuit is more positive than +3 Volts(with respect to signal ground); and is
considered to be ‘‘off”’ when the voltage is more negative than — 3 Volts(with
respect to signal ground). The *‘on’’ condition corresponds to a logic zero (0) and
the “‘off”’ condition corresponds to a logic one (1). The following table summarizes
this information.

INTERCHANGE VOLTAGE
NOTATION
Negative Positive
Binary State 1 0
Signal Condition Marking Spacing
Function OFF ON
Table. On/Off Condition

2

APPENDIX

Pin Designations and Signal Descriptions

The mechanical specification of the RS-232-C requires a 25-pin connector (called a
DB-25). The following table specifies the pin assignments and signal descriptions as
they apply to the Radio Shack RS-232-C Interface.

Pin Number Abbreviation Description

1 PGND Protective Ground

2 TD Transmit Data

3 RD Receive Data

4 RTS Request-to-Send

5 CTS Clear-to-Send

6 DSR Data Set Ready

7 SGND Signal Ground

8 CD Carrier Detect
14 STD Secondary Transmit Data
18 SUN Secondary Unassigned
19 SRTS Secondary Request-to-Send
20 DTR Data Terminal Ready
22 RI Ring Indicator

Table 2. Pin Designations and Signal Description

Protective Ground: This must be bonded to the chassis or equipment frame. It
may also be connected to Signal Ground.

Transmit Data: Direction-to data communication equipment. Signals on this
circuit are generated by the data terminal equipment for transmission of data to
remote equipment. This signal should be held in the marking condition during
intervals between characters and at all times when no data is being transmitted.

Received Data: Direction-from data communication equipment. Signals on this
circuit are received from remote equipment which transmits data to the terminal.
This signal should be held in the marking condition during intervals between
characters and at all times when no data is being received.

Request-to-send: Direction-to data communication equipment. This signal is
required by the terminal equipment to control the direction of data transmission by
the data communication equipment. On one-way or duplex channels, the “‘on’’
condition maintains the data communication equipment in the transmit mode. The
“‘off”” condition maintains the data communication equipment in the non-transmit
mode. ‘

On a half duplex channel, the ‘‘on’’ condition maintains the data communication
equipment in the transmit mode and inhibits the receive mode. The “‘off”’ condition
maintains the data communication equipment in the receive mode.

/3

TRS-80 MODEL il

Clear-to-Send: Direction-from data communication equipment. This signal is
generated by the data communication equipment and indicates whether or not the
data set (modem) is ready to transmit data. The ‘‘on’’ condition is an indication to
the data terminal equipment that the data set can accept data on the Transmit Data
circuit. The *‘off’’ condition is an indication to the data terminal equipment that it
should not transfer data to the data set.

Data Set Ready: Direction-from data communication equipment. This signal
indicates the status of the local data set to the data terminal equipment. The ‘‘on’’
condition of this circuit indicates that the data communication equipment is not in
test, talk or dial mode and has completed any timing functions required to complete
call establishment (answer tone, etc.). The ‘‘off’’ condition will appear at all other
times and indicates that the data terminal should accept only Ring Indicator signals
and ignore all other signals (appearing on any other interchange circuit).

Data Terminal Ready: Direction-to data communication equipment. This signal
is used to control the switching of the data communication equipment to the
communications channel. The ‘‘on’’ condition indicates to data communication
equipment that it should connect to the communications channel and that it should
maintain the connection as long as the ‘‘on’’ condition is present. The ‘‘off”’
condition causes the data communication equipment to be removed from the
communications channel following any in-process transmission of data.

Ring Indicator: Direction-from communication equipment. The ‘‘on’’ condition
of the circuit indicates that a ringing signal is being received on the communications
channel. In general, this means that the data set is being polled and that data
communication is desired by the polling device. The ‘‘off’’ condition is held during
the off segment of the ringing cycle (between actual rings) and at all other times
when ringing is not being received.

Carrier Detect (Receive Line Signal Detector): Direction-from data
communication equipment. When ‘‘on’’, this signal indicates that the data set is
receiving a carrier from a remote data set via the communications channel. The
“‘off’’ condition indicates that no carrier is being received or that the signal quality
is unsuitable for data demodulation.

/4

Index

INDEX

The prefix “‘Op’” means ‘‘Operation Section’’; ‘‘Ba’’ means ‘‘BASIC Section’’.
Pages referenced by a letter/number are in the Appendices.

Examples:

Op 3/4-8 Operation, Chapter 3, pages 4 through 8

Ba 2/1,8/3 BASIC, Chapter 2, page 8; Chapter 8, page 3

A/1, 20 Appendix A, pages 1 and 20

Page references in boldface indicate the most important information

for a particular index entry.

Subject Page
Abbreviations Op 3/5, 9/1
A/t
ABS ... Ba 1/4, 7/1
A/13
ACCUIACY . oot e et A/18
AC Power (see Connections).... Op 2/3, 14/1
Addition (see Operators—Numeric)
AND. ..o Ba 1/25
A/3
Arithmetic Functions. Ba 7/1-5
A/13
Arrays
memory requirements A7
size DIM)..................... Ba 4/4-5
subroutine examples Ba 6/1-6
ypes. ... Ba 6/3
variables Ba 8/10
A7
ASCIl (see Codes) Op 4/2, 5/3
Ba 1/10, 5/2
A2
ATN ..o Ba 7/1
A3
AUTO. oo e Ba 2/1
A/3
Base Conversions
decimal/binary/hex.................. F/1
BASIC Keywords D/1-2
BaudRate............... Op 1/2, 3/2, 6/1,3,
8/2,3,5,6,
12/19, 13/2
(BREAK) Processing........ Op 3/6, 4/2, 12/22
Cass?..............o... Op 3/1-2, 8, 12/15,
13/1
Cassette
connection................ Op 1/2, 2/1-3
operationo... Op 6/1-6
interface. Op 1/1, 14/3
VO. . Op 12/4
jackpinol Op 14/3
Capitals and Lowercase. Op 4/1, 12/24

Subject Page
COBL.....oo i Ba 7/2
A/13

Characters
ASCIE. ... Ba 1/10
codesoiiiiiiii.L. Ba 8/10
cn-7
declaration..................... Ba 1/13
display....................... Op 12/20
graphics. Op 5/3
input. ... Op 3/4
JapaneseKana Op 5/5
repeat......... ...l Op 4/2
SIZ&. ..o Op 5/1
space compression.............. Op 5/4
special Op 5/4, 711
Ba 5/3
A/
text. ... o Op 5/3
CHRS ... Ba 5/2-3
A/12
CINT L Ba 7/2
A/13
CLEAR M. ... Op 41
Ba 2/2, 4/4, 5/1
A1, 3,8
CLOAD (see Loading) Op 6/3
Ba 2/2
A/3
CLOAD? ...t Ba 2/3
A3
CLS .. Op 7/1
Ba 8/2
A/
Clock (Real Time) Op 10/1
setting Op 1/1, 10/
reading Op 10/2
display........................ Op 10/2
table.................... ... Op 12/5
TIMES ... Ba 5/8

Codes

ASCH. ... Op 4/2, 5/2
baud................ Op 8/4
character Ccn-7
controll Op 4/2
C/3

INDEX/1

TRS-80 MODEL i

Subject Page
eITOr .. B/1-3
graphics........................ Ba 5/2

C/4-6
HEX. .. oo Ba 1/10
internal keyword. D/1
TAB. . C/5

Command Mode. Op 3/5
(see Modes)

Concatenate (+).............. Ba 1/22, 5/1

A/2

Conditional Tests Ba 4/15-17

Connections
AC power source Op 2/3, 14/1
cassette........................ Op 2/3
perpherials Op 2/1

Constants Ba 1/4, 10
defined......................... Ba 1/5

CONT. . e Ba 2/3

A/3

Control Codes (see Codes)

COS.. . Ba 7/2

A/13

CSAVE (see Saving)................. Ba 2/3
A4

CSNG ... Ba 7/2
A/13

Cursor................ Op 3/4, 8, 5/1, 12/25
Ba 3/2

Customer Information. Inside Back Cover
DATA. ... Ba 3/10
A7

Data
conversion............... Ba 1/4, 14,17
handling........................ Ba 1/4
manipulating Ba 1/18-28
numeric..................... Ba 1/8, 14
representing Ba 1/5
strings i Ba 1/10
storing Ba 1/8

Debugging....................... Ba 2/3, 7

Declaration Characters
(see Characters)

Definition Statements

DEFDBL Ba 4/3

A/8

DEFINT ... i Ba 4/2

A/8

DEFSNG 0ot Ba 4/3

A/8

DEFSTR i Ba 4/3

A/8

DELETE......... i, Ba 2/4

A/4

DIM....... ..o Ba 4/4-5, 6/1-7

A/9

Disk............... oo Op 1/1,3,3/1, 3
Division (see Operators—Numeric)

Double-Precision. Ba 1/8-9, 13, 15-16

A2, 17

Subject Page
Edit Mode (see Modes)
EDIT o Op 3/6
Ba 2/4
Ba 9/1-7
A/5
ELSE. ... Ba 4/15
A1
END....o Ba 4/5
A/9
ENTER....................... Op 3/7-8, 4/1
Erase Ba 9/2
AN
ERL ... Ba 8/3
A4
ERR ... Ba 8/3
A4
ERROR........ i, Ba 4/12
A10
Error Codes and Messages B/1-3
Execute Mode (see Modes)
EXP .o Ba 7/3
A/13
Exponentiation
(see Operators—
Numeric) Ba 3/4
A7
Expressions
logical Ba 1/4
NUMENC ... Ba 1/3
relational Ba 1/4, 24
sting........... Ba 1/3
Using............oooviiiiiin.., Ba 1/24
symbols Ba 1/2
Extralgnored....................... Ba 3/9
Field Specifiers, PRINT USING Ba 3/4-5
A/6
FileName Op 6/3
Ba 2/2-3
FIXo Ba 7/3
A3
FOR...TO... STEP/NEXT....... Ba 4/9-11
A0
Forbidden Words (see Reserved Words)
FRE ... Ba 5/3
A2
Functions................ Ba 1/4, 28, 8/1-10
arithmetic. A/13
special L A4
string ... A2
Glossary............................ H/1-3
GOSUBoiiiiiiiiii Ba 4/7
A/9
GOTO ... Ba 4/6
A/9
Graphics......................... Ba 8/1-2
Codes ... C/4-6
statements A1

INDEX/2

Subject Page
BECRE
Greater Than/Less Than............ Ba 1/23
Header (see READY)................ Op 3/4
HEX Codes (see Codes)
IF...THEN. ..ELSE.............. Ba 4/14-15
A/11
Immediate (see Modes)
line........oo i Op 3/4
specialkeys Op 3/5, 12/15
INKEYS ... Ba 5/4
A2
INP. Ba 8/4
A/14
INPUT. .o Ba 3/8-9, 4/1
A/6
Input/Output. Ba 3/1-13
initialization.............. Op 11/1, 12/10
interpretation. Op 3/4
routing................... Op 9/1, 12/16
RS-232-C ..viiiieeaneinn, Op 8/4
statements............... A/6
INPUT #-1. ... Ba 3/12-13, 4/1
A7
Installation....................... Op 2/1-3
INT. . Ba 7/3
A3
Integer Precision Ba 1/4, 4/18
Keyboard
description.................. Op 1/1, 9/1
input. Op 12/3
using............... Op 4/1-3, 12/11-12,
Cn-7
Keyword Codes (see Codes)
LEFTS ot Ba 5/5
A2
Left Bracket (see Exponentiation). Ba 3/4
A2
LEN o Ba 5/5
A2
Less Than/Greater Than............ Ba 1/23
A2
LET o Ba 4/5
A/9
Limits (Program and Memory).......... A7
Line
display....................... Op 12/21
length........l Op 7/2
Immediate...................... Op 3/4
Input.................. L Op 3/4
program........., Op 3/5
Line Numbers...................... Op 3/6
Ba 1/2
Line Printer
description. Op 1/3, 9/1
interface Op 14/2
LLIST. .o Op 7/1
LPRINT ..o Op 7/1
A/6

Subject Page
output.l Op 12/4
Print Screen........ Op 1/1, 2/1, 4/2, 7/5,

12/14, 14/2

USING. ... Op 7/1-5
LIST. o Op 3/5, 6/3, 7/1
Ba 2/4

A/4

LLIST .o Ba 2/4
A/4

Loading (CLOAD)

BASIC programs................. Op 6/3
(=T o] £ Op 6/2
SYSTEMtapes Op 6/5
table.............co i Op 6/4
LOG. . it Ba 7/3
A3

Logical Operators (see Operators) Ba 1/25-27

LOOp .. Ba 4/9-11, 5/4

LPRINT ..o Op 3/5, 7/1

Ba 3/12

A/13

Machine Language CALL........... Op 3/3,6
Ba 2/6, 8/7-8

MEM ... Ba 8/4
A4

Memory

available...................... Ba 8/4-5
A/14

important addresses Op 7/3
D/

MaP ..o Op 12/23
size (see USR, SYSTEM) Op 3/3,8
overhead......................... A/16
MID$..o Ba 5/6
A/12

Model I/Model Ill Program Conversion ... G/1
Modes of Operation

Command (or Immediate) Op 3/4
Ba 2/1, 4/6
A
Edit............. Op 3/6
Ba 9/1-8
A/5

Execute..................... ... Op 3/6 -
System................, Op 3/6
Ba 2/6
Monitor Mode (see SYSTEM) Ba 2/6

Multiplication (see Operators—Numeric)

Multiple Statements on One Line
(see Statements)

NEW ..o Ba 2/5
A4

NEXT ..o Ba 4/9-11
A/10

NOT. . Ba 1/25
A3

Object Files (Machine Language). Op 3/6

Ba 2/6, 8/7-8

INDEX/3

Subject Page
ONERRORGOTO.................. Ba 4/12
A/10
ONnGOSUBoooiiiii. Ba 4/9
A/9
ONNGOTO ... Ba 4/8
A/9
Operators

arithmetic. Ba 1/19
A2
hierarchy Ba 1/26
logical Ba 1/25
A2
numeric.................... Ba 1/19, 26
A2
relational Ba 1/22
A2
string.............. ... Ba 1/22, 27
A2

Operating Modes (see Modes)
OR. . Ba 1/25
A/3
Order of Operations................ Ba 1/26
A/3
OUT ..o Ba 8/5
A1
Page Controls. Op 7/3
Parentheses Ba 1/26
PEEK....... ..o i Ba 8/5
A/14
Peripherals Op 1/2, 211, 3/1, 2
POINT ... Ba 8/2
A/14
POKE ...\ttt Ba 8/5-6
A1
Port (see INP and OUT) Ba 8/4, 5
POS. ... Ba 8/6
A4
Power Off Op 3/2
PowerOn Op 3/1-2, 13/3
PRINT ..o Op 7/1
Ba 3/1-2
A6
PRINT @covvviiiiiiin Ba 3/2
A6

Printer (see Line Printer)
Print Screen (see Line Printer)

PRINTTABo i Ba 3/3

A/6

PRINTUSING Ba 3/4-8

A/6-7

PRINT #-1. Ba 3/12

A/6

PrintZones....................... Ba 3/1-2
Program

documentation (REM) Ba 4/14

elements...................... Ba 1/2-8

examples...........o Ba 1/2

limits.......... A/16

TRS-80 MODEL Il __

Subject Page
statements.................... Ba 1/2-3
Ba 4/1-17
A/8
Prompt............................ Op 3/4
Ba 2/1
Punctuation
colon L. Op 3/5
Ba 1/2
exclamation mark........... Ba 1/12, 3/5
A/2,8
period., Op 3/5
Ba 2/4, 3/4
questionmark................... Ba 3/8
A1
quotationmark.............. Op 3/5, 6/3
semi-colon...................... Ba 3/3
RAM Op 1/1,2, 3/2-3,
5/4,12/1, 22
RANDOM. i Ba 7/4
A/10
READ...........oooi i, Ba 3/10-11
A7
READY Op 3/4
REDO ... Ba 3/9
Relational Operators (see Operators)
REM........, Ba 4/14
A/10
Reserved Words (see Variables) Ba 1/6
A/15
RESET ... Op 3/2, 12/15
Ba 8/2
A/
RESTORE......................... Ba 3/11
A7
RESUME.......................... Ba 4/13
A/10
RETURN Ba 4/7
A9
RIGHTS ... Ba 5/6
A2
RND.o Ba 7/4
A/13
ROM Op 1/2, 3/1, 11/
ROM Addresses.................. Op 12/24
ROM Subroutines All are in Op:
$CLOCKOFF ... 10/2, 12/5
$CLOCKON 10/2, 12/5
SCSHIN 12/6
SCSHWR......... i, 12/7
$CSIN ... 12/7
$CSOFF o 12/8
$CSOUT ... 12/9
SDATE......... oo 12/10
SDELAY..... ... 12/10
SINITIO 11/1, 12/10
SKBCHAR, 12/01
SKBLINE 12/12
SKBWAIT. ... 12/12
$KBBRK, 12/13

INDEX/4

Subject Page
SPRCHAR ... 12/14
SPRSCN 12/14
SREADY 12/15
SRESET ..., 12/15
SROUTE.................. 9/2, 12/16, 26
SRSINIT 8/8, 12/17, 25
SRSRCV................iuus 12/18, 25
$RSTX 12/18, 25
$8SETCAS 1219
STIME 10/2, 12/20
SVDCHAR................. 12/20
SVDCLS ... 12/21
SVDLINE......................... 12/21

RS-232-C Interface Op 8/1-8, 12/17-18

14/1

I/1-4

RUN ... Op 3/5, 9, 6/3
Ba 2/5-6, 3/5, 9, 4/6

A/4

Saving on Cassette (CSAVE).... Op 6/2, 12/6

Scrolling............... .. L Op 5/2

Searching (see Edit)
BASIC.......ooii Op 6/4

Sequence of Execution........... Ba 4/6-05

A/9

SET ..o Ba 8/1-2

A/

SGN....o Ba 7/4
A/13

SHIFD)....................... Op 3/7, 4/1-3
A/

Single-Precision Ba 1/8, 11, 12, 15-16
A2, 14

Space Compression Codes (see Codes)

Special Keys....................... Op 4/1
Command Mode Op 3/5
Execute Mode Op 3/6
Immediate Mode Op 3/5

Specifications Op 14/1

AM16-17

SQAR. .. Ba 7/5

A4

Start-up Dialog................... Op 3/2, 8

Statement............... Ba 1/2-3, 4/1, 4/15
assignment Ba 4/1
conditional. A1
defined......................... Ba 1/3
definition Ba 1/13
functions A/10
graphics Ba 8/1-2

A1

special Ba 8/5
A/t1

rogram..................... Ba 4/1-15

P A/8
STEP .. Ba 4/9-11
STOP. .. Ba 4/6
A/9

String. ... Ba 5/1-9
arraysS. Ba 6/3

Subject Page

SRRy
data Ba 1/10
functions Ba 5/2, 9
A/12
input/output Ba 5/2
A2
operators Ba 5/4
storagespace................... Ba 5/1
STRINGS ..., Ba 5/7
A2
STRE . Ba 5/6-8
A2
Subroutine, Ba 4/6-7
Subtraction (see Operators—Numeric)
Syntax Error B/1-2
SYSTEM (see Modes) Op 6/5
Ba 2/6
A/4
TAB. ... Op 3/7, 4/2
BA 3/3
Tab Codes (see Codes)................ C/5
TAN ... Ba 7/5
A/14
Technical Information Op 12/1-26
THEN. ... o Ba 4/15
TIMES ... Ba 5/8
A2
TO o Ba 4/10-12
TROFF. ... Ba 2/7
A/4
TRON. ... Ba 2/7
A/4
Troubleshooting and Maintenance Op 13/1-3
Type Declaration Tags Ba 1/12-13
A2
USING Ba 3/4-8
USR .o Ba 8/7-8
A4
VAL Ba 5/8
A2
Variables
classifying................... Ba 1/4, 12
counter.................. ..., Ba 4/9-11
defined......................... Ba 1/5
NAMEeS.ccovvieiennnn. Ba 1/5-6
reservedwords. Ba 1/6
simple and subscript Ba 1/6
VAPRTR. ... Ba 8/9-10
A/14
Video Display
brightness adjustment........ Op 2/2, 3/1
clearing...................... Op 12/21
contrast adjustment.......... Op 2/2, 3/1
description.............. Op 11, 7/1, 91
cn-7
output.o Op 12/4
USING. ... vve i Op 5/1-5

INDEX/5

TRS-80 MODEL Il

Subject Page
o]

Warranty Back Cover
Z-80 Microprocessor Op 1/1,2, 3/1, 3,6,
12/1,3, 14/1

Ba 8/4,7

Figures and Tables

ANDORNOT ..oovviee e Ba 1/25
Base Conversions F/1
Cassette Jack Pin................. Op 14/3
Character Codes
control: zero-31 C/2
text: 32-127....... ... C/3-5
graphic: 128-191 C/6-7
space compression: 192-255. C/7-8
Connection of Peripherals/Controls ... Op 2/2
Derived Functions EN
ErrorCodes.oviviniin. B
Glossary ... H/
Keyword Codes D/1
Memory Map Op 12/23
Numeric Operators................. Ba 1/26
Numeric Relations Ba 1/23
Parallel Printer Interface............ Op 14/2
Printer Pin Location................ Op 14/3
Recommended Levels for Loading Tape Op6/4
RS-232-C Signal Conversion 111
Standard RS-232-C Signal Op 14/1
String Relations Ba 1/23
Summary Tables
Arithmetic Functions A/13
Characters and Abbreviations........ AN
Commandscovvveeenn... A/3
Field Specifiers..................... A7
Input/Output Statements............. A/6
Program Statements................ A/8
RAM Addresses A/25
Reserved Words A/15
ROM Addresses A/24
Special Functions. A4
String Functions. A/14

INDEX/6

Customer Information

Service Policy

Radio Shack’s nationwide network of service facilities provides quick, convenient,
and reliable repair services for all of its computer products, in most instances.
Warranty service will be performed in accordance with Radio Shack’s Limited
Warranty. Non-warranty service will be provided at reasonable parts and labor
Ccosts.

Because of the sensitivity of computer equipment, and the problems which can
result from improper servicing, the following limitations also apply to the services
offered by Radio Shack:

1. Ifany of the warranty seals on any Radio Shack computer products are broken,
Radio Shack reserves the right to refuse to service the equipment or to void any
remaining warranty on the equipment.

2. Ifany Radio Shack computer equipment has been modified so that it is not
within manufacturer’s specifications, including, but not limited to, the
installation of any non-Radio Shack parts, components, or replacement boards,
then Radio Shack reserves the right to refuse to service the equipment, void any
remaining warranty, remove and replace any non-Radio Shack part found in the
equipment, and perform whatever modifications are necessary to return the
equipment to original factory manufacturer’s specifications.

3. The cost for the labor and parts required to return the Radio Shack computer
equipment to original manufacturer’s specifications will be charged to the
customer in addition to the normal repair charge.

OWNER REGISTRATION

Please put me on your mailing list to receive all information relating to this product — the
Microcomputer Newsletter, advance product information, application hints and tips,
users’ suggestions, etc. (Free for one year. After one year, a subscription will be offered at
a nominal fee.)

PRODUCT PURCHASED

TRS-80 TRS-80 TRS-80

MODEL | O MODEL 11 O MODEL IIl O
TRS-80 TRS-80

COLOR COMPUTER O POCKET COMPUTER 0O

Name
Company
Address
City State Zip
CHANGE OF ADDRESS
Product Catalog No. 26-
Serial No. (if any)
Purchase Date
Change to: (New Address) Change from: (Current Listing)
Name
Company
Address
City State

Zip

Note: In order for us to keep you informed about product changes or improvements,

please mail one of these forms to us if your mailing address changes.

CHANGE OF ADDRESS

Product Catalog No. 26-
Serial No. (if any)

Purchase Date

Change to: (New Address) Change from: (Current Listing)
Name
Company
Address
City State
Z2ip—

Note: in order for us to keep you informed about product changes or improvements,

please mail one of these forms to us if your mailing address changes.

ATTN DEPT. 0055

ATTN DEPT. 0055

ATTN DEPT. 0055

RADIO SHACK
4925 PYLON RD.
FT. WORTH, TX 76106

RADIO SHACK
4925 PYLON RD.
FT. WORTH, TX 76106

RADIO SHACK
4925 PYLON RD.
FT. WORTH, TX 76106

PLACE
POSTAGE
HERE

PLACE
POSTAGE
HERE

PLACE
POSTAGE
HERE

Radio Shack Software License

The following are the terms and conditions of the Radio Shack Software License for
copies of Radio Shack software either purchased by the customer, or received with
or as part of hardware purchased by customer:

A. Radio Shack grants to CUSTOMER a personal, non-exclusive, paid up license to
use the Radio Shack computer software programs received. Title to the media
on which the software is recorded (cassette and/or disk) or stored (ROM) is
transferred to the CUSTOMER, but not title to the software.

B. Inconsideration for this license, CUSTOMER shall not reproduce copies ot such
software programs except to produce the number of copies required for
personal use by CUSTOMER (if the software allows a backup copy to be made),
and to include Radio Shack’s copyright notice on all copies of programs
reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack’s system and applications software
(modified or not, in whole or in part). provided CUSTOMER has purchased one
copy of the software for each one resold. The provisions of this Software
License (paragraphs A, B, and C) shall also be applicable to third parties
purchasing such software from CUSTOMER.

Important Note

All Radio Shack computer programs are licensed on an ‘“‘as is’’ basis without
warranty.

Radio Shack shall have no liability or responsibility to customer or any other person
orentity with respect to any liability, loss or damage caused or alleged to be caused
directly or indirectly by computer equipment or programs sold by Radio Shack.
including but not limited to any interruption of service. loss of business or
anticipatory profits or consequential damages resulting trom the use or operation of
such computer or computer programs.

Good data processing procedure dictates that the user test the program. run and test
sample sets of data. and run the system in parallel with the system previously in use
for a period of time adequate to insure that results of operation of the computer or
program are satistactory.

LIMITED WARRANTY

For a period of 90 days from the date of delivery, Radio Shack warrants to the
original purchaser that the computer hardware unit shall be free from manufac-
turing defects. This warranty is only applicable to the original purchaser who
purchased the unit from Radio Shack company-owned retail outlets or duly
authorized Radio Shack franchisees and dealers. This warranty is voided if the
unit is sold or transferred by purchaser to a third party. This warranty shall be
void if this unit's case or cabinet is opened, if the unit has been subjected to
improper or abnormal use, or if the unitis altered or modified. If a defect occurs
during the warranty period, the unit must be returned to a Radio Shack store,
franchisee, or dealer for repair, along with the sales ticket or lease agreement.
Purchaser’s sole and exclusive remedy in the event of defect is limited to the
correction of the defect by adjustment, repair, replacement, or complete
refund at Radio Shack’s election and sole expense. Radio Shack shall have no
obligation to replace or repair expendable items.

Any statements made by Radio Shack and its employees, including but not
limited to, statements regarding capacity, suitability for use, or performance of
the unit shall not be deemed a warranty or representation by Radio Shack for
any purpose, nor give rise to any liability or obligation of Radio Shack.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS WARRANTY OR IN THE

RADIO SHACK COMPUTER SALES AGREEMENT, THERE ARE NO

OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT)
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR i

FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL RADIO

SHACK BE LIABLE FOR LOSS OF PROFITS OR BENEFITS, INDIRECT,

SPECIAL, CONSEQUENTIAL OR OTHER SIMILAR DAMAGES ARISING

OUT OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

RADIO SHACK EA DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U. K.
280-316 VICTORIA ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
RYDALMERE, N.S.W. 2116 5140 NANINNE WEST MIDLANDS WS10 7N

8749190-880-SL PRINTED IN U.S.A.

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf

